THE ENSEMBLE SYSTEM

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Mark Garland Hayden

January 1998

(© Mark Garland Hayden 1998
ALL RIGHTS RESERVED

THE ENSEMBLE SYSTEM

Mark Garland Hayden, Ph.D.
Cornell University 1998

Ensemble is a group communication system that demonstrably achieves a
wide range of goals. It is a general-purpose communication system intended
for constructing reliable distributed applications; it is a flexible framework for
carrying out research in group ware protocols; it is a large-scale, system-style
implementation built in a state-of-the-art programming language; and it is
also a mathematical object designed to be amenable to formal analysis and
manipulation. Thus, Ensemble straddles a number of disciplines of computer
science ranging from systems architectures to formal methods. The principal
advances described in this thesis are the creation of the Ensemble system
and the demonstration that it exhibits the properties just mentioned.

The thesis begins by presenting the Ensemble architecture, as well as
background in group communication. We describe the various components
of the architecture, give examples of their interactions, and compare this
architecture with that of other layered communication systems.

The Ensemble protocols make heavy use of layered micro-protocols. We
describe optimization techniques that greatly reduce the performance over-
heads introduced by layering and show how the architecture facilitates these
optimizations. In addition we show how to formalize these optimizations in
type theory and implement them using the Nuprl theorem prover.

Ensemble is implemented in a dialect of the ML programming language.
We describe how the use of ML impacted the system, and present a wide

range of comparisons between Ensemble and a similar system implemented
in C.

BIOGRAPHICAL SKETCH

Mark Hayden is originally from Davis, California. He received his Bachelor
of Arts in Computer Science from the University of California at Berkeley in
1991.

il

ACKNOWLEDGEMENTS

Ken Birman, Robert Constable (my advisors), Greg Morrisett, Ulfar Er-
lingsson, Robert Harper, Jason Hickey, Takako Hickey, Peter Lee, Robbert
van Renesse, and Samuel Weber contributed valuable comments on earlier
versions of this thesis. Contributors to the implementation of Ensemble in-
clude Tim Clark, Chris Driggett, Pedro Fheas, Roy Friedman, Takako Hickey,
Ohad Rodeh, Robbert van Renesse, Alexey Vaysburd, Werner Vogels, and
Zhen Xiao. Robbert van Renesse was the primary implementor of the Horus
system, from which many ideas were adopted in Ensemble.

Chet Murthy played a valuable role in this work by suggesting a number
of important early directions, as well as through his infectious enthusiasm.

Robbert van Renesse contributed to the optimization architecture in
Chapter 3. Jason Hickey and Christoph Kreitz contributed to the formal-
ization of the optimizations in Chapter 5. In particular, Christoph Kreitz
implemented the protocol optimization framework in Nuprl. The design of
the Ensemble message buffers in Chapter 4 arose out of discussions with
Jason Hickey and Werner Vogels.

The work reported in this dissertation was supported in part by ARPA/ONR
grant N0014-96-1-10014. Any opinions, findings, or recommendations pre-
sented in the following pages, however, are my own and do not necessarily
reflect the views either of the Advanced Research Projects Agency or of the
Office of Naval Research.

v

TABLE OF CONTENTS

1 Introduction
1.1 Ensemble overview
1.2 Organization of thesis.

2 Ensemble Architecture

2.1 Components
2.1.1 The Network
2.1.2 Processes
2.1.3 Endpointso
214 Groupso i i
21.0 Messageso
21.6 Events
2.1.7 Viewstate
2.1.8 Layers
2.1.9 Stacks
2.1.10 Application

2.2 Comparison with Horus and STREAMS

2.3 Examples of component interactions.
2.3.1 Network communication
2.3.2 Timeouts
2.3.3 Sending and receiving a message
2.3.4 Stack creation L.

2.4 Conclusion

3 Optimizing Layered Communication Protocols
3.1 Related work oo
3.2 Advantages and disadvantages of layering

3.3 Common Paths 32
3.3.1 Complex event traces 35
3.4 Optimizing Event Traces 38
3.4.1 Optimizing computation 38
3.4.2 Compressing protocol headers 41
3.4.3 Delayed processing 43
3.5 Performance L. 43
3.5.1 Comparison with Horus Protocol Accelerator. 45
3.6 Conclusion 46
Impact of Using ML 48
4.1 Related work oo 49
4.2 Objective Caml o0 49
4.2.1 Portabilityo 50
4.2.2 Performance considerations 50
4.2.3 Memory management 51
4.2.4 Interoperabilityo, o1
4.2.5 Debugging and profiling 92
4.2.6 Summaryo 53
4.3 Comparing C and ML implementations 53
4.3.1 Development times 53
4.3.2 Language interfaces 53
4.3.3 Supported platforms L. 54
4.3.4 Multi-threading o4
4.3.5 Sizes of executables 000 55
4.3.6 Memory requirements 25
4.3.7 Performance oL, 95
4.3.8 Linecounts o6
4.3.9 Sizes of protocol layers 57
4.3.10 Bugs 29
4.3.11 Evolution 29
4.4 MeSsageso i e e 29
4.4.1 Protocol Headers 60
4.42 Message Payloads 64
4.5 Buffer management L0000 65
4.5.1 First implementation L0, 66
4.5.2 Using large message buffers 66
4.5.3 Reference counted management 67

vi

4.6 Inlining
4.7 Conclusion

5 Formalization of layer optimizations

5.1 Functional layers
5.2 Functional layer composition
5.3 Trace conditions

5.4 The optimizations in a functional context

5.4.1
0.4.2
5.4.3
5.4.4
5.4.5
5.4.6

Extracting the source code . .
Intermediate data structures .
Inlining of functions
Traditional optimizations . . .
Delayed processing

Compressing protocol headers

5.5 Reintroducing imperative operations
5.6 Optimization of an actual protocol stack
Independent optimization of layers

2.6.1
5.6.2
9.6.3

6 Conclusion

Composing the handlers . . .
Message compression
5.7 Automation
5.8 Conclusion

BIBLIOGRAPHY

vii

76
7
78
79
80
80
81
82
82
82
82
86
86
88
94
95
95
98

100

102

viii

21
2.2
2.3
24

3.1

4.1
4.2

LIST OF TABLES

Different types of Ensemble events. 15
Some of the Ensemble event fields. 16
Fields of a ViewState record. 17
Some of the properties currently supported by Ensemble. 19
Performance comparisons for various protocol stacks. 44
Comparison of lines of code in Ensemble and Horus. 57
Size comparisons of comparable Horus and Ensemble protocols. . 58

X

1.1

21
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

4.5

5.1
5.2
9.3
5.4
3.5
5.6
5.7

LIST OF FIGURES

A set of a protocol layers, some of which have been composed into
a protocol stack. Lo

Time line of endpoints in a group.
Diagram of use of headers and events.
A sample protocol stack.

Comparison of protocol layers and event traces.
Event traces, trace handlers, and trace conditions.
A complex, non-linear trace in a routing protocol stack.
Round-trip latency time-line between two processes.

Example of headers in Horus: type definitions.
Example of headers in Horus: message handling code.
Example of headers in Ensemble.
Comparison of the performance of management mechanisms used

foriovecs.o
Depiction of the revised iovec structure.

Portion of handler for normal case messages in the Bottom layer.
Portion of handler for normal case messages in the Mnak layer.
Optimization theorem for the Bottom layer.
Optimization theorem for the Mnak layer.
The upward linear layer composition theorem.
The optimized stack theorem.
The optimized stack theorem with message compression.

xi

xii

Chapter 1

Introduction

The construction of fault-tolerant distributed applications involves overcom-
ing a number of challenges. To begin with, it is difficult to get distributed
processes to coordinate on tasks that require consistent actions to be taken
by different components of the system. The protocols typically employed
to achieve such goals are extremely complex and notoriously error prone.
The additional needs to survive faults in different parts of the system, adapt
to other changes in the environment, and also meet performance require-
ments considerably complicate the task. One successful approach to meeting
these challenges, called group communication, involves structuring applica-
tions into cooperating groups of processes. This thesis addresses a number
of issues in the design of the Ensemble group communication toolkit.

Ensemble was originally conceived as a bridge between several disciplines
in computer science. It is a general-purpose communication system intended
for constructing reliable distributed applications; it is an extremely flexible
framework for carrying out research in group ware protocols; it is a large-
scale, system-style implementation built in a state-of-the-art programming
language; and it is also a mathematical object designed to be amenable to
formal analysis and manipulation. These several views of Ensemble place it
in a unique position straddling disciplines of computer science ranging from
systems architectures to formal methods. Before moving on to the issues that
form the primary focus of this thesis, we first give a picture of this larger
context.

Group communication was first introduced as a framework for structur-
ing critical, high availability systems. The process group abstraction is the
central feature of group communication systems. It typically provides op-

erations for processes to join and leave groups, and to communicate within
a group. Group communication is a well-accepted approach to providing
tools for building reliable distributed systems. Early group communication
toolkits such as V [CZ85] demonstrated that process groups and group com-
munication can be highly efficient and scalable. The ISIS [BvR94] system
demonstrated the usefulness of group communication in settings such as stock
exchanges, a major air traffic control system, VLSI fabrication process plan-
ning software, and other significant, critical applications. In applications such
as these, group communication is used to coordinate distributed actions such
as updates to replicated state. Today, group communication seems likely to
make a transition into mainstream commercial environments through efforts
such as Phoenix (IBM), NT clusters (Microsoft), the Surface Combatant 21
standard (the Navy), etc.

A major reason for the success of group communication is that groups
are a good vehicle for introducing properties into distributed systems. There
are a rich set of properties that have been found to be useful in group com-
munication settings. Properties such as broadcast atomicity and consistent
failure notification help application developers reason about the behavior
of distributed systems, especially in complex failure scenarios. In addition,
there are other properties regarding message ordering, state transfer, authen-
tication and privacy, scalability, etc.

The richness of the properties used in group communication generates
new challenges for systems designers. Communication systems such as ISIS
were limiting because they provided a fixed (albeit large) set of properties
for applications. The problem is that there are many classes of applications,
each with its own communication structure and desired properties. Any
fixed set of properties is nearly certain to be poorly matched with important
classes of applications. Part of the reason is that it is often best to provide
just the properties needed by an application but no more than are needed,
because additional properties can introduce additional overheads. The ability
to provide a large (and extensible) range of properties to applications requires
additional flexibility from group communication systems.

Systems such as the x-Kernel [PHOA93| and Horus [vyRBM96] were de-
signed to add such flexibility through modular architectures whereby sets of
micro-protocols (or layers) can be composed into high-level protocols. This
allows applications to select the exact set of protocols that meet their needs.
In some cases, the available set of protocols may still not fit the need, but
the application designer also has the option to extend the system with en-

o= -
=1 =
TOTAL
CAUSAL
MBRSHIP
FRAGMENT
FLOW
NAK
SECURE =
COM STABLE

Figure 1.1: A set of a protocol layers, some of which have been composed
into a protocol stack.

tirely new protocols. See Figure 1.1 for a depiction of such a system where
layers can be viewed as Lego (TM) blocks. The idea is that a set of layers
can be “snapped together” to instantiate a protocol stack with the desired
properties.

Providing the ability to compose micro-protocols has its drawbacks, how-
ever. Communication protocols are notoriously difficult to get right. Even
the core group membership protocols provided by ISIS (now more than 10
years old) are still not fully understood and developing specifications and
verifying such protocols is currently an active area of research [CHTCB95,
FLS97]. Introducing composable layers makes the system more complex by
greatly increasing the number of configurations.

It should also be noted that in the background of this drive for flexibility,
there is the even more powerful demand for high-performance. In many set-
tings, developers are unwilling or unable to sacrifice performance for greater
flexibility in the underlying communication system. Often, it is the case that
these two objectives, flexibility and performance, push in opposite directions.
This is because increasing flexibility improves the modularity of the system,
and this in turn often prevents low-level optimizations from being made.

In summary, there are several conflicting demands placed on group com-
munication systems. The systems must provide rich sets of combinations
of properties from which applications make selections. They must provide
high performance. And they must provide high confidence in their correct-

ness, fault-tolerance, and security guarantees, possibly through some kind of
formal analysis.

1.1 Ensemble overview

We developed a communication toolkit, called Ensemble, in an effort to ad-
dress these problems. Our goal with Ensemble has been to build the system
so that it can provide the levels of performance and flexibility needed in
emerging distributed applications, but designed in such a way as to support
the application of formal methods in order to reason about the correctness
of the protocols. We use a dialect of the ML programming language in a
way that both allows the system developers to leverage powerful language
support to attain high performance and flexibility, and that also makes the
system amenable to the application of formal methods that increase confi-
dence in the correctness of the system. Other systems have aimed at similar
objectives, but we believe Ensemble is the first to simultaneously pursue this
mixture of objectives.

For example, Distributed ML [Kru93] (DML) is a group communication
system built in ML. The work on DML and Horus was done in parallel at
Cornell. DML can be viewed largely as an attempt to re-implement the
ISIS toolkit in ML, making use of improved support for abstraction and
threading provided by the Concurrent ML programming language [Rep91].
However, the DML implementation never reached maturity. It also lacked
the facilities for protocol composition that Horus supported, did not support
switching protocols on-the-fly (as Ensemble does), nor did it provide very
good performance.

The x-Kernel is a modular communication system designed primarily to
support point-to-point protocols. The architecture is based on gluing dif-
ferent protocol components together to construct protocol graphs. They
demonstrated that modular implementation of TCP/IP could provide better
performance that standard implementations. They explored optimization is-
sues through techniques called Integrated Layer Processing (see Chapter 3).
However, the x-Kernel did not support the ability to change protocols on-the-
fly, not was it designed to support the use of formal methods for optimization
or verification of the protocols.

As our work is done primarily using ML, one of the issues that we attempt
to tackle is to understand what place there is for advanced programming lan-

guages in such systems. However, this is by no means the only focus of the
thesis. Because many of the issues are independent of the programming lan-
guage in use, we try to generalize beyond particular programming languages.
We view our use of ML as a means to expose the fundamental issues through
clean design.

1.2 Organization of thesis

The organization of the remainder of this thesis is as follows. Chapter 2
presents the Ensemble architecture, providing the reader with background
to understand the later chapters. We describe the various components of
the architecture, give examples of component interactions, and compare this
architecture with that of a selection of other layered communication systems.

Chapter 3 addresses concerns about efficiency that arise from the heavy
use of layering in Ensemble. Although layering provides a large number of
advantages, including flexibility and modularity, it also has costs. We enu-
merate these disadvantages and then proceed to describe, in a programming
language independent fashion, a series of optimizations that can be applied
to eliminate the layering overheads. We have applied these optimizations to
Ensemble, and this has resulted in extremely low communication latencies.

Chapter 4 describes language issues that arise in building a group com-
munication system. The focus is on advanced programming languages (es-
pecially those in the ML family) that provide support for strong static
type checking, clear formal semantics, automatic memory management, etc.
While it is always important to design systems with a high level of abstrac-
tion, it is perhaps even more so in a language such as ML because the lan-
guage is not designed with much support for low level operations. If the
system cannot be designed with a high level of abstraction while maintaining
efficiency, then the use of ML has the potential to become a liability rather
than an advantage. However, we show that a communication system can be
successfully implemented in ML and we present a wide range of comparisons
between the resulting system, Ensemble, and a similar system implemented
in C, Horus.

In a programming language such as ML with a formal semantics, the
layering optimizations from Chapter 3 have an elegant formalization. Chap-
ter 5 shows how the optimizations can be formalized in type theory and
implemented in a theorem prover. This chapter brings together a number of

themes. It shows the importance of the architecture in Chapter 2; it shows
how to formalize the layering optimizations; and it also demonstrates that
the use of ML provides additional benefits to those discussed in Chapter 4.
This chapter ends with an example application of these techniques to an
actual Ensemble protocol stack.

In summary, we present a novel group communication system, Ensemble,
that simultaneously achieves several important goals. It provides a high level
of flexibility through dynamic composition of protocols and the ability to
change protocols on-the-fly. It provides high performance, as demonstrated
through low latencies. It provides a clean architecture which leverages the
advantages of advanced programming languages, facilitates the fine-grain
decomposition of protocols, and applies formal methods to both optimize
and verify the protocols.

Our software is becoming widely used. It has been freely available since
June, 1996, from the Cornell Computer Science Department’s web site. There
are a number of early users. These include the Ensemble CD Jukebox (a dis-
tributed audio server developed with Jason Hickey), BBN AquA, Configured
Energy Systems (a software provider for utility companies), and the NILE
project [MOR196].

Chapter 2

Ensemble Architecture

Before proceeding to the body of the thesis, we first present a description of
aspects of the Ensemble architecture relevant to the later discussion. The
purpose of this chapter is to familiarize the reader with a layering architecture
in order to provide context for the remainder of the thesis.

Our design builds upon prior work concerned with introducing group
communications systems into the OS (the V system) [CZ85], structuring
point-to-point protocols for modularity [Rit84, PHOA93], and doing so for
group communication systems systems with strong properties [vRBM96]. We
were heavily influenced by the Horus work, and indeed Ensemble was “born”
as an attempt to build a reference implementation of Horus. Performance
was so good that our research group moved over entirely to use the Ensemble
substrate.

This chapter proceeds as follows. Section 2.1 presents the important
components of the Ensemble layering architecture. These include processes,
the network, endpoints, groups, messages, events, layers, stacks of layers, and
applications. Section 2.2 compares the Ensemble architecture with that of the
Horus system and STREAMS. Section 2.3 gives examples of the interactions
of the components.

2.1 Components

Here we present a brief description of each component in the system. Al-
though we attempt to progress from basic components to the more complex
ones, a certain amount of circularity occurs in the interactions that make

forward references unavoidable.

2.1.1 The Network

The network serves as a medium for transmitting messages between pro-
cesses. Not surprisingly, it provides two operations: send and receive. The
send operation takes an address and a message and transmits the message to
the corresponding destination. The receive operation returns any messages
waiting to be delivered to a process. Perhaps more surprising is what the
network does not provide. It does provide timing or reliability guarantees,
nor does it provide failure detection of network links. Indeed, one of the im-
portant uses of Ensemble is to introduce guarantees over otherwise unreliable
networks®.

2.1.2 Processes

A process is the unit of state and computation provided by operating sys-
tems for executing programs. For instance, processes in standard operating
systems such as Unix contain (among other things) an address space and one
or more threads of control. The notion of a process used in this description
is also assumed to include one or more network addresses which can be used
to send messages between processes.

2.1.3 Endpoints

An endpoint corresponds to the state and computation associated with a
unique endpoint identifier. Endpoints are an abstraction used to structure a
process’ communication. Endpoints can be viewed as a finer grained division
of processes. They are useful for logically structuring communication in a
process because a process may contain any number of endpoints.

Endpoint identifiers do not contain addressing information. Because of
this, endpoints are not confined to a particular process and may migrate to
other processes, although at any one time they should be “located” in only
one process. What it means for an endpoint to migrate is system-dependent.

"Ensemble also works in settings with reliable network links (such as the
SP2 fast interconnect), where it can introduce stronger forms of reliability
and other useful properties.

For the purposes of Ensemble, it just means that a different address should be
used to send a message to the endpoint after it has migrated. The guarantees
associated with communication to migrating endpoints are provided by the
layers in the selected protocol stack.

2.1.4 Groups

As a group communication system, the concept of groups is central to En-
semble. Groups are an important structuring mechanism that has proven
to be useful in a wide range of distributed applications. In the most ab-
stract sense, groups correspond to some computational resources that are
distributed across some endpoints, each of which coordinates with the oth-
ers to provide a service. In fact, a service can be composed of a number
of groups, each of which coordinates to provide some logical subset of the
overall service. Clients of the service may require interacting with several of
the groups. The endpoints in the groups may overlap or be distinct. Often,
one or more endpoint in a process may participate in multiple groups. The
point is that groups serve as a tool for structuring distributed computation
and that an important part of designing a group-based applications involves
the ways in which the groups are structured.

As an example, consider a replicated file system implemented using a
group structure. Such a system could be constructed with servers and clients
in a single group. When a client wishes to create or modify a file, it may
broadcast a message describing the operation to the group (or subcast it to
just the servers). Reading a file may only require sending a single point-
to-point message to one of the servers followed by a reply from that server.
Of course, a group structure is not enough because there are a number of
other issues that would be important in building such a service, such as
ensuring that updates are reliably delivered to all servers. Often, many of
these issues are handled by a group communication system that provides
additional support beyond just the group structure, thereby simplifying the
construction of such services.

The notion of groups has a number of different senses that are important
to keep clear. Even though we may think of a group as a distinct object in
itself, groups are typically implemented so that the group only exists through
the endpoints that are participating in it. For instance, in Ensemble, there
is no “group” data structure. Groups only appear through identifiers that
serve as a naming mechanism for endpoints to use when communicating. In

fact, not only do groups not have any state or computational resources of
their own, as with endpoints their identifiers do not contain any addressing
information?. Messages are “broadcast to a group” by sending a message
to the addresses of the processes that contain endpoints in a group. The
message contains a further “sub-address” specifying the group as a context
for delivering the message. Sending point-to-point messages is done in the
same fashion, except that the sub-address specifies an endpoint as the unique
destination.

Even though groups really only exist through identifiers, we commonly
use the notion of a group to refer to a set of endpoints communicating us-
ing a particular group identifier. When viewing a group as a collection of
actual endpoints, there are a number of operations on endpoints that affect
the group. Endpoints can form singleton partitions®. Partitions can merge
together into larger partitions, and they can split into smaller partitions (for
instance, when network failures occur). Finally, endpoints can send messages
to other endpoints in its partition. These messages can either be point-to-
point messages to another endpoint, or broadcasts to all the endpoints in
the partition. Some systems also support “subcasts,” which are broadcasts
to a subset of the endpoints in the partition. See Figure 2.1 for a time line
diagram of a changing group.

Yet another use of the term group is to refer to just one of the parti-
tions of a group, even though a group may concurrently have several such
components.

2.1.5 Messages

Messages are the objects that are transmitted over the network. As might
be expected for a communication system, messages are the most basic data
structure of Ensemble. Most of the source code is involved with managing

2This is not entirely true. When broadcasting to the group with IP multi-
cast, group identifiers are used to generate a hash value which is in turn used
to select an IP multicast address. This use, however, could be eliminated.

3We use the term partition loosely. Mathematically, a partition is a di-
vision of a set into disjoint subsets. Similarly, groups are often partitioned
into subsets of endpoints. We use the term partition to refer to one of these
partitioned components of a group rather than the overall set of components
that form a partition.

10

Partitions merge

/—\

-_— N

\
\
\
~_
m= =

2
Singleton
Partitions

Process
failure

R\

<]

Pt2pt send

<t
<t

~

~

>

“Partition detects
failure and merges
with singleton
partition

Figure 2.1: Time line of endpoints in a group. Each vertical line corresponds
to an endpoint. Time proceeds down. Arcs are message transmissions. Each
endpoint begins in a singleton partition. A, B, and C merge into a larger
partition and communicate. Later, A fails and D creates a singleton partition.
B, C, and D then merge to form new partition.

11

messages; most of the memory allocated is for messages; and most of the per-
formance profile is involved in manipulating messages. Both architecturally
and in terms of performance, communication systems are heavily influenced
by their implementations of messages. The implementation of messages in
Ensemble is described in detail in Section 4.4.

Ensemble messages are divided into two parts: the payload and headers.
At the network and the application, messages take the form of flat sequences
of bytes. This is because networks only transmit sequences of bytes, and
because we wish to support application programs written in languages such
as C, where messages are typically represented as sequences of bytes. Between
the application and the network, protocol layers add information to messages
in the form of headers. Headers are added at the sender by each layer and
removed at the destination. For instance, headers are used to attach sequence
numbers to messages in order to implement FIFO transmission protocols.

An important point to remember about headers is that access to a header
is localized to the layer that generated it. As a message travels down the
sender’s protocol stack, each layer pushes one of its headers onto the message.
At the receiver, each layer pops its header from the message in the opposite
order (see Figure 2.2). Because all stacks in a partition use the same or-
dering of layers, each layer accesses headers generated by the same protocol
(although a different instance of it). In addition, a layer cannot normally
access the headers of other layers. Locality of headers is useful because it
means that there are no interdependencies between different protocols on the
structure of their headers, and so the header of one protocol can be changed
without affecting other protocols.

Our approach to header formats takes a somewhat non-standard view of
how to format messages. In contrast with many other systems [PHOA93,
Pos81], the formats of headers for individual layers are not defined at the
byte level. In addition, the headers of a stack of protocol layers is generally
not the concatenation of the headers of the individual layers. As an exam-
ple, consider TCP/IP where both the TCP and IP headers are defined at
the byte level and both sets of headers are catenated together. In Ensemble,
one string of bytes defines all the headers. This string of bytes could cor-
respond to the catenation of the strings for each of the headers. However,
Ensemble is free to format protocol headers any way so long as all endpoints
in a group use the same format. This gives Ensemble a great amount of
flexibility in how headers are represented and in the methods for optimizing
them. But it also raises questions about the drawbacks of this approach. The

12

main drawback is that there are no simple, static formats (such those used
in TCP) to which programs must adhere when communicating with an En-
semble process. However, this would be difficult to achieve anyway because
Ensemble embodies a more dynamic view of the world than most protocol
architectures. Whereas the TCP protocol and its headers are not expected
to change over the lifetime of a process, the Ensemble protocol stacks that
an application uses do change dynamically. At any time, an application can
request a protocol change that results in the process group switching to an
entirely different set of protocols and headers. In addition, new protocols
can be dynamically linked into Ensemble at run time. All of these forms of
dynamicism argue against fixed header formats.

Many layered communication systems, such as Horus, view headers as
extensions of the low-level representation of messages. In such systems, mes-
sages can be viewed as a “stack” of bytes and the application and protocols
use operations to push and pop bytes onto and off of messages. This is a
design feature of the x-Kernel, and Unix STREAMS has a similar mecha-
nism. There are a variety of reasons for this. One reason may be the need
to adhere to strict, standardized header formats, such as in implementations
of TCP. Another reason is the expectation that low-level operations will be
more easily optimized by compilers and help in achieving high performance.
Unfortunately, such designs have costs. These include the programming costs
for having protocols directly handle byte-ordering and word-size incompat-
ibilities between hosts. In addition, the use of low-level operations may
prevent high-level optimizations from being made to headers.

2.1.6 Events

Events are another data structure used for communication. Whereas
messages are used for inter-process communication, events are used for intra-
process communication. In other words, messages are used to communicate
information between endpoints, and events are used to communicate within
an endpoint’s protocol stack. Events are never transmitted on the network.
For instance, the protocol layers in a protocol stack use events to commu-
nicate with each other, both about messages as well as for other operations
that may not involve messages.

An event is a record with a number of optional fields. The only field that

13

SENDER

Event
I:|] Message

D Header

Figure 2.2: Diagram of use of headers and events.

depicted.

(D] (D (DD
TLE

-

Protocol Stack -_

Protocol Layer ~_ .

[E
g
g
g

=1

14

RECEIVER

Message payloads are not

Table 2.1: Different types of Ensemble events.

‘ event type ‘ description
Account output accounting information
Ack acknowledge message
Block block the group
BlockOk acknowledge blocking of group
Cast broadcast message
Dump dump your state (for debugging)
Elect I am now the coordinator
Exit disable this stack
Fail fail some endpoints
GossipExt gossip message
Init first event delivered
Invalid erroneous event type
Leave an endpoint wants to leave
LostMessage | a messages has been “lost”
MergeDenied | deny a merge request
MergeFailed merge request failed
MergeGranted | grant a merge request
MergeRequest | request a merge
Migrate change my location
Orphan message was orphaned
Present describe endpoints present in this view
Prompt prompt for a new view
Protocol request a new protocol
Rekey request a rekeying
Send point-to-point message
Suspect endpoint is suspected to be faulty
Timer request a timer
View notify that a new view is ready
XferDone notify that a state transfer is complete

15

Table 2.2: Some of the Ensemble event fields.

‘ field name ‘ description
Type type of the event
Peer rank of sender/destination
Ack acknowledgement information
Address new address for an endpoint
Failures failed members
Presence endpoints present in the current view
Suspects suspected endpoints
SuspectReason | reasons for suspicions
Stability stability vector
NumCasts number of Casts seen
Mergers list of merging endpoints
Contact contact for a merge
HealGos gossip for Heal layer
SwitchGos gossip for Switch layer
ExchangeGos | gossip for Ezchange layer
ViewState state of next view
Protocol protocol
Time the current time
Alarm alarm timeout
NoTotal message is not totally ordered
ServerOnly deliver only at servers
ClientOnly deliver only at clients
History debugging history

16

Table 2.3: Fields of a ViewState record.
| field name | description

version version of Ensemble
group name of the group

protocol protocol stack in use
params protocol parameters

coordinator | initial coordinator
logical time | logical time of this view

view members in the view

address addresses of members

out_of date | who is out of date

clients who are the clients in the group?
primary is this the primary partition?
xfer_view is this a state transfer view?

key security keys in use

prev_ids identifiers for previous views
uptime time this group started

all events must contain is the “event type” field*. Some of the event types
are listed in Table 2.1. Other fields that may appear in events include lists
of failed members (in failure announcement events), the origin or destination
of a message (in send events), a time value (in timer events), etc. Some of
the event fields are listed in Table 2.2.

2.1.7 View state

Another important Ensemble data structure are the records used for con-
figuring protocol stacks. These are called ViewState records. They contain
all the information needed to initialize member endpoints of a partition, in-
cluding information such as the name of the group, the membership list, the
addresses of the processes for each endpoint, a description of the protocol to
use, optional parameters, etc. Some of the fields are listed in Table 2.3.

“The use of type refers to a “tag” that takes one a set of enumerated
constant values and is not related to the formal notion of types.

17

ViewStates are replicated in the sense that all endpoints in a partition
are typically configured using equivalent ViewState records. Protocols es-
tablish new configurations of the system by disseminating new ViewState
records. However, once created a ViewState record never changes (i.e.,
they are immutable), so new configurations are described by creating mod-
ified copies of previous ViewStates and there are no issues with reliably
“updating” ViewStates.

2.1.8 Layers

High-level protocols in Ensemble are implemented by composing large num-
bers of protocol layers (often more than 15). Note that stacks (and the layers
in them) are generated for each group that an endpoint joins, and that new
stacks are created each time a partition reconfigures. Through heavy use
of layering, we keep protocols (the most complex parts of a communication
system) individually small. In addition, through careful design, layers can be
combined in a large number of ways, thus providing a wide range of properties
from which applications can select. Some of the properties that applications
can select from Ensemble appear in Table 2.4 with brief descriptions. The
layers for the default Ensemble protocol stack appear in Figure 2.3, also with
brief descriptions. Details of these properties and protocols are beyond the
scope of this thesis and are not presented here. The remainder of this section
discusses the structure of individual layers; the next section discusses issues
related to composing protocols into stacks.
Every Ensemble layer has three parts:

e A data type for its local state and a function for generating an initial
state based on a ViewState.

e A data type for the headers it places on messages. Headers were de-
scribed in Section 2.1.5.

e Handlers for communicating with layers above and below it in its pro-
tocol stack. This is the main body of the protocol.

Each instance of a layer maintains some local state. Different protocols use
different types for their state records. For instance, a reliable transmission
protocol usually maintains some kind of message buffer in its state. Each
layer’s state is maintained privately so that no other part of the system can
access or modify it.

18

Table 2.4: Some of the properties currently supported by Ensemble. These
draw upon a large background of research on group communication.

property ‘ description ‘

Agree agreed (safe) delivery

Auth authentication

Causal | causally ordered broadcast
Cltsvr client-server management
Debug adds debugging layers

Evs extended virtual synchrony
Flow flow control

Frag fragmentation-reassembly
Gmp group membership properties
Heal partition healing

Migrate | process migration

Privacy | encryption of application data
Rekey support for rekeying the group
Scale scalability

Suspect | failure detection

Switch | protocol switching

Sync group view synchronization
Total totally ordered broadcast
Xfer state transfer

19

protocol

Top

Heal

Switch

Migrate

Leave

Inter

Intra

Elect

Merge

Slander

Sync

Suspect

Stable

Appl

Frag

Pt2ptw

Mflow

Pt2pt

Mnak

Bottom

description

top-most protocol layer
partition healing

protocol arbitration and switching
process migration

reliable leave

multi-partition view changes
single partition view changes
leader election

reliable merge protocol
failure suspicion sharing
view change synchronization
failure detector

broadcast stability detection
application representative
fragmentation /reassembly
point-to-point window flow control
multicast flow control
reliable, FIFO point-to-point
multicast NAK protocol
bottom-most protocol layer

Figure 2.3: A sample protocol stack. This is the protocol stack created
when using the default Ensemble properties {Gmp, Sync, Heal, Migrate,
Switch, Frag, Suspect, Flow} (see Table 2.4). Ensemble provides a facility
for translating from abstract properties to concrete protocol stacks.

20

Layers interact with their environment only through event communication
with the layers above and below them in the protocol stack. For this they
export handlers for receiving events and messages from the adjacent layers
and in turn are given handlers for passing events and messages out to these
layers. Layers have no direct access to the system clock or to system timers
and must request alarms through event communication (we present below an
example of a layer requesting a timeout).

Constraints on the interactions of layers are important throughout their
design, implementation, optimization, and verification. The guarantee that
layers cannot access other layers’ states or headers means there are no de-
pendencies between layers on these data types, so one layer’s state or header
can be changed without affecting other layers. Forcing layers to interact
with their environment only through event communication guarantees that
the behavior of a stack of layers is completely described through this event
communication and the updates to the individual layer’s states.

For example, consider the Horus system’s layering model, where no con-
straints are placed on layers. They can (and do) make system calls, request
timer callbacks, and spawn threads. Verifying such layers (or otherwise rea-
soning about them) requires the ability to model all the possible interactions
of a layer with its environment, which greatly complicates such a task. In En-
semble, layers do not take such actions and therefore modeling their behavior
is substantially simplified.

Of course, requiring layers to communicate only through events may have
its disadvantages. For instance, the use of threads or shared state conceivably
could simplify the construction of some layers. However, although this was
initially a concern, we have found that all the protocol layers fit cleanly into
this model and that instead of increasing the complexity of the layers, the
constraints make them easier to understand because of the simplified model
of execution. Requesting timer alarms is the only operation that is awkward
to represent through event communication. We discuss the issues related to
timer alarms below in the example interactions.

2.1.9 Stacks

Ensemble protocol stacks are linear compositions of layers which work to-
gether to implement high-level protocols. Because all protocol layers imple-
ment the same interface, all combinations of layers are “syntactically” valid.
However, not all combinations of layers form useful protocol stacks. En-

21

semble provides a mechanism for selecting protocol stacks that implement a
specified set of properties®.

Layers are composed into protocol stacks following a layering model. The
are two primary invariants required of the model. The first is that events are
passed between layers in FIFO order. The second is each layer only execute a
single event at a time (i.e., the execution of events is serialized at the layers).

There are number of advantages for defining this model. One is that
it aid in reasoning about optimizations made to protocol stacks. Another
advantage is that it allows there to be multiple mechanism for composing
layers. For instance, Ensemble currently supports three kinds of compo-
sition: an event queue implementation, a threaded implementation, and a
functional implementation. Abstractly, one can think of bi-directional event
queues connecting each pair of layers, but the implementation can use any
suitable mechanism.

Events emerging from the bottom-most layer in a stack cause a message
to be transmitted on the network. The only events that emerge from the
top-most layer are:

e A NewView event is generated when the protocol stacks determines
it is ready to start a new view of the group. The event contains a
ViewState record that is used to generate a new protocol stack (the
creation of protocol stacks is further described below).

e An Exit event is generated when the protocol stack has nothing left to
do. This usually occurs after it has determined that all endpoint have
started the next view.

A new protocol stack is generated whenever the configuration of the group
changes. For instance, when an endpoint fails or when two partitions merge
together, a new stack is created for that new configuration at each endpoint.
Using multiple protocols stacks is useful for two reasons. First, it simplifies
many of the layers because they only need to implement their protocol for
a single configuration. Second, it allows Ensemble to support on-the-fly
protocol switching, where the new configuration actually uses a different
protocol stack or set of parameters from the previous configuration.

5This is implemented through an ad hoc algorithm, though [Kar97] shows
techniques for formalizing such an algorithm.

22

2.1.10 Application

The last component is the application. Supporting applications is of course
the point of the architecture. Whereas normally the application would be
considered to be everything in the process outside of Ensemble, we typically
use the term application somewhat loosely to describe the handlers for one
endpoint in one group. Thus, multiple “applications” may inhabit one pro-
cess. As far as Ensemble is concerned, an application consists of a set of
upcall handlers to use for delivering messages. In such a case, the different
applications in a process can of course communicate locally through shared
state.

Although most layering architectures place the application at the top of
the stack, in Ensemble the application is considered part of one of the layers.
An advantage of this approach is that the application can appear low in a
protocol stack, thus eliminating the overhead of the layers above it when
it sends messages. For instance, the group membership protocol layers are
typically placed above the Appl layer (see Figure 2.3). The Appl layer serves
as a proxy for the application in the protocol stack, inserting new messages
into the stack for the application and redirecting application messages out of
the stack to the application. The application gets several kinds of callbacks
from the Appl layer for receiving messages and other information, and can
generate a number of “actions” for introducing new messages in the system
or for other purposes.

2.2 Comparison with Horus and STREAMS

Ensemble departs in a number of ways from previous layering architectures.
We compare it here with the Horus [vRBM96] and STREAMS [Rit84] archi-
tectures.

e The application appears as part of one of the layers instead of at the
top of the stack. This allows it to appear lower in the protocol stack,
which improves performance. Horus and STREAMS both place the
application at the top of the stack.

e Restricted layer interactions. Ensemble layers only interact with their
environment though event communication. This aids both in the formal
reasoning about and in the manipulation of layers. It is important to

23

the optimizations in Chapter 3. Horus and STREAMS do not restrict
layers, thus making such optimizations very difficult, if not impossible.

e New protocol stacks are generated when the configuration of the system
changes. This allows Ensemble protocol layers to be switched on the
fly. Horus and STREAMS can not support this.

e Decoupling of endpoints from processes. Ensemble endpoints are not
directly connected with processes and thus can migrate between pro-
cesses. Previous systems incorporate addressing information into end-
point identifiers, thereby trapping endpoints within single processes or
requiring considerable “gymnastics” to extricate them.

2.3 Examples of component interactions

2.3.1 Network communication

Communication over the network occurs when an event, some message head-
ers, and a message payload emerge from the bottom of a protocol stack. This
causes the infrastructure to transmit a message on the network. The mes-
sage is constructed by concatenating a connection identifier, the headers, and
the message payload. A connection identifier exactly specifies the particular
destination (one or more protocol stack within a process) of a message. At
the destination, these are separated and the connection identifier is used to
look up the protocol stack to which to deliver the headers and payload.

2.3.2 Timeouts

Protocol layers request timeouts through event communication. When a pro-
tocol layer needs a timeout to occur at some point in the future, it generates
a Timer event with an Alarm field that specifies the time after which it
wants to be woken, for instance, to trigger the retransmission of some mes-
sage. This event is passed down the protocol stack until it emerges from the
bottom. At this point, the infrastructure takes the timeout value and inserts
it into a priority queue with other timeouts. When the timeout has expired,
an Timer event is generated with the current time in a Time field. This
event is passed up the protocol stack. Each layer that is waiting for a timeout

24

checks the time, and if its timeout has expired it takes whatever action was
scheduled to occur. The event is then passed on up the protocol stack.

As mentioned above, it may not be immediately clear that this is a
good way to request timeouts. In particular, it is inefficient to pass an
event through several layers instead of being able to directly request a time-
out. However, there are several reasons why this does not turn out to be a
problem and is in fact advantageous. First, all the Ensemble protocols use
coarse-grained timeouts (on the order of 1 per second), so modest inefficiency
in management of timers does not significantly affect system performance.
Second, the optimizations we describe in Chapter 3 can eliminate all the
overhead of the event communication. Third, the use of event communi-
cation provides the advantage that we can introduce clock synchronization
protocols that can provide the abstraction of synchronized clocks to higher
layers in the stack.

2.3.3 Sending and receiving a message

We now present a full example of an application sending and receiving a mes-
sage. The application first allocates a payload buffer and puts the message
information in the buffer. It then generates a Send action with the message
payload and the name of the destination. This is passed to the Appl layer
of the current protocol stack. The Appl layer then generates a Send event
(distinct from the Send action) with the Peer field set to the same desti-
nation as in the action. This layer also generates a Send® header (again,
distinct from the action and the event). The event, payload, and header are
then passed down the protocol stack.

Most layers just add a trivial header to the headers and pass the infor-
mation to the next layer. However, at the Pt2pt layer, which implements
reliable, FIFO ordering of messages, more work is done. The Pt2pt layer
buffers the payload and the headers from the above layers in case it needs to
retransmit the message. It also puts a more complex header on the message,

SWe present the headers as they are represented in the Ensemble system,
where they are normal ML data objects. In the case of this Send header,
the header is a constant header (it does not contain any other information).
A non-constant header, Data(seqno), is used below where the header also
contains an integer field.

25

Data(seqno), where seqno is the sequence number of the current message.
This header is pushed onto the previous headers and is passed along with the
event and payload down to the next protocol layer. Eventually, these reach
the bottom of the stack, are marshalled (see Section 4.4) into a sequence of
bytes, and are transmitted on the network, as described above.

Assuming message arrives at the destination (i.e., the network does not
drop it and the destination process has not failed), the headers, payload,
and event are separated, the headers are unmarshalled, and all three are
then delivered to the bottom-most layer of the destination protocol stack.
Each layer pops off its header and usually then just passes the information
to the next layer above it. At the Pt2pt layer, the Data(seqno) header is
popped off and the sequence number is checked. If the sequence number is
greater that what it has already received, it may buffer the information and
send another message back to the origin with a Nak(lo,hi) header. This
requests a retransmission of the earlier messages. However, we will assume
the sequence number matches the next expected message, in which case the
message is again passed up to the next layer. Eventually, the Appl layer will
get the event, message payload, and the Send header (which is now the last
header because the others have already been stripped off). The Appl layer
passes the payload to the application’s receive handler along with the origin
of the message.

2.3.4 Stack creation

As mentioned above, a new protocol stack is generated whenever a configura-
tion of the partition changes. This can be caused by the failure of a process,
the merging of two partitions, the migration of an endpoint to another pro-
cess, a request by the application to switch to using a different protocol stack,
or any number of other causes. Regardless of the cause, the endpoints in the
partition execute a reconfiguration protocol. When, the reconfiguration pro-
tocol is complete, each stack in the partition emits a View event from the
top. This contains the ViewState record for the new partition. It is an
invariant of the system that all endpoints in the same partition will use the
same ViewState to construct their stacks, and so all endpoints are guaran-
teed to end up with compatible stacks. When the NewView event emerges,
the infrastructure uses the ViewState to select the appropriate protocol
layers, create a new local state for each layer, and to compose them. The
stack is then connected to the network so that messages can be sent to it.

26

This is done by installing the connection identifiers that the stack accepts in
a central hash table. When the external initialization is complete, an Init
event is passed into the bottom of the stack to complete the initialization.
This event passes up the protocol stack and each layer takes some action,
such as requesting a first timeout.

The old protocol stacks may stay around for some time and operate in
parallel with the new protocol stack. This is necessary, for instance, if some
messages for the old stack need to be retransmitted. The two sets of proto-
col stacks are never able to communicate, however, because they use distinct
connection identifiers on their messages. Sometime later, the old stack de-
termines it is no longer needed and emits an Exit event from the top. This
causes connections to the network to be disabled and eventually results in
the state of all the layers being garbage collected.

2.4 Conclusion

The layering architecture is important to the rest of the work described here.
The optimizations described in Chapter 3 and Chapter 5 depend on a number
of properties of the architecture. The clean decomposition of protocol layers
described in Chapter 4 is possible largely because of this architecture. In
addition, it supports switching protocols on-the-fly and endpoint migration.

27

Chapter 3

Optimizing Layered
Communication Protocols

This chapter addresses the question of how to achieve high performance in
layered communication systems. Layers provide many advantages, but intro-
duce serious performance inefficiencies. We describe where these inefficien-
cies arise, and then present optimization strategies that effectively eliminate
them. This presentation relies heavily on the layering model presented in the
previous chapter. In the remainder of this chapter, we point to ways in which
features of the layering model enable the optimizations we describe. Most of
the description is presented in a programming language neutral fashion be-
cause the optimizations are are not limited to systems implemented in ML.
However, Chapter 5 presents an elegant formalization and implementation of
the optimizations using a theorem prover that can be used when the system
is written in ML.

The key idea of the approach we present is in the careful selection of
the “basic unit of optimization.” For optimization, our method automati-
cally extracts a small number of common sequences of operations that occur
in protocol stacks, which we denote event traces. We provide a facility for
substituting optimized versions of these traces at runtime to improve per-
formance. We show how these traces can be mechanically extracted from
protocol stacks and that they are amenable to a variety of optimizations that
dramatically improve performance. We recommend event traces be viewed
as orthogonal to protocol layers. Protocol layers are the unit of develop-
ment in a communication system: they implement functionality related to a
single protocol. Event traces, on the other hand, are the unit of execution.

28

Figure 3.1: Comparison of protocol layers and event traces. Layers are the
basic unit of functionality. Traces are the basic unit of execution.

Viewing the system in this fashion, we can understand why it is important to
focus on protocol layers in development, but on event traces when optimizing
execution (see Figure 3.1).

In addition to the high performance of the optimized protocols, our
methodology benefits from its ease of use. The protocol optimizations are
made after-the-fact to already-working protocols. This means that protocols
are designed largely without optimization issues in mind. The optimizations
require almost no additional programming. Only a minimal amount of anno-
tation of the protocol layers is necessary (the annotation consists of marking
the start and end of the common paths of the source code), and this anno-
tation is only made to the small portions of the protocols which are in the
common path. In addition, the optimizations place few limitations on the
execution model of the protocol layers.

This chapter proceeds as follows. In Section 3.1, we present related work
on optimizing layered communication protocols. In Section 3.2, we discuss
the advantages and disadvantages of layering. In Section 3.3, we present the
general approach to extracting common paths from protocol stacks. In Sec-
tion 3.4, we present the optimizations for computation, for message headers,
and for delaying operations. In Section 3.5, we present the performance of

29

these optimizations.

3.1 Related work

The combination of advantages and disadvantages of layered protocol archi-
tectures has made layering optimization an active of area of research. Other
approaches have been used to improve the performance of layered communi-
cation protocols. Work done in our research group on this problem has been
described in [vR96]. In that work, protocols are optimized through the use
of pre- and post-processing to move computation overhead out of the com-
mon path. Through this approach, the latency is greatly reduced, though
the computation is not. Pre- and post-processing is done through a layering
model where handlers are broken into the operations to be done during and
after messaging operations (pre-processing for the next message is appended
to the post-processing of the current message). This also demonstrated the
use of small connection identifiers to compress headers from messages and
the use of message packing to achieve higher throughput. A more detailed
comparison is presented below in Section 3.5.1.

A somewhat orthogonal set of optimization techniques is called Integrated
Layer Processing [PHOA93, CT90] (ILP). In general, the term ILP encom-
passes optimizations on multiple protocol layers, thus the optimizations we
describe are a form of ILP. However, ILP techniques tend to focus on inte-
grating data manipulations across protocol layers, whereas our optimizations
focus on optimizing control operations and message header compression. ILP
typically compiles iteration in checksums, presentation formatting, and en-
cryption from multiple protocol layers into a single loop to minimize memory
references. The Ensemble protocols almost never touch the application por-
tion of messages. The only exceptions to this are security protocols which
encrypt/decrypt the message or calculate cryptographic checksums. The op-
timizations we present focus on aspects of protocol execution that are com-
patible with these other approaches and we believe they could be combined
in one system.

The Scout project [MP96, MPBO96] has explored optimization tech-
niques revolving around paths, which are a similar construct to the traces
described here. The two approaches differ in a number of ways, however.
The Scout goals involve optimizing paths all the way from the network to
other 10O devices, such as disks and displays. In part because of the wide range

30

of components involved, the Scout work has a loosely constrained execution
model that prevents the formalization of arguments regarding the correctness
of the optimizations, as can be done with our approach. In addition, appar-
ently because of a lack of a carefully designed model, their optimizations
only apply to limited kinds of traces and cannot optimize complex traces (as
defined in Section 3.3.1). Merging of both approaches would have the poten-
tial benefit of extending our techniques to settings beyond communication
protocols and at the same time increasing the ability to reason about the
correctness of their optimizations and expanding the class of traces they can
optimize.

[Bas97] (carried out subsequent to the work reported on here) adopted
the layering architecture described in Chapter 2 and applied similar opti-
mizations using a compiler, designed for optimizing layered communication
protocols. The compiler was applied to modified versions of the Ensemble
protocols and the Active Messages protocol suite [TVEB95], demonstrating
significant performance improvements over the unoptimized protocols.

Other work from which we have adopted ideas includes work on opti-
mizing TCP protocols. [CJRS89] demonstrated a number of techniques for
optimizing TCP through determination of the important code paths in TCP,
along with descriptions of methods to optimize those code paths. However,
the approach presented there focussed on a single protocol architecture and
did not address issues involved with generalizing the techniques to optimize
a wide range of protocols.

PathIDs [Kay95] are another technique for improving the processing of
messages by incorporating a field into message headers that causes normal
case messages to be rapidly dispatched to hand-optimized code for handling
those cases. This work does not address the issues involved in generating
the optimized handlers. The use of PathIDs in an important ingredient in
optimizing communication protocols because the time spent in dispatching
messages becomes increasingly significant as the other overheads are reduced.

3.2 Advantages and disadvantages of layering

The optimizations described here are primarily targeted at removing the
overhead introduced by using layered communication protocols. This begs

31

the question of why we should be interested in layered communication pro-
tocols if their use causes serious performance degradation. Layered protocols
have many advantages, some of which we list below:

e Layered protocols are modular and can often be combined in various
ways, allowing the application designer to add or remove layers depend-
ing on the properties required. This way you only pay for what you
use.

e When carefully decomposed into small layers, high-level protocols can
be much more rapidly developed and tested than large, monolithic pro-
tocols.

e There are many cases where different protocols are interchangeable for
one another. The variations may each have different behaviors under
different workloads. In a layered system, application designers can
select the suite of protocols most suited to their expected work load.
In addition, Ensemble supports changing protocol stacks underneath
executing applications, so the application can automatically adapt its
protocol stack to a changing work load or environment.

e We are also interested in protocol verification. The current state of
verification technology requires that the unit of verification be as small
as possible. Small, layered protocols are just within the range of cur-
rent verification technologies, whereas large, monolithic protocols are
certainly outside this range.

The disadvantages of layered systems consist primarily of overhead, both
in computation and in message headers, caused by the abstraction barriers
between layers. Because a message often has to pass through many (10
or more) protocol layers, the overhead of these boundaries is often more
than the actual computation being done. Different systems have reported
overheads for crossing layers of up to 50us [vRBM96] (on a Sparcstation 10).
In Ensemble, this cost is as low as bus (also on a Sparcstation 10). The goal
of this chapter is to mitigate these disadvantages so that the use of layers is
a win-win situation.

3.3 Common Paths

32

Original iack Opt'inized Stack

function { Trace
B Handler
S
Original >
Trace — =]
Exectution }
Trace
Conditic

Figure 3.2: Event traces, trace handlers, and trace conditions. The original
protocol stack is embedded in an optimized protocol stack where events that
satisfy trace conditions are intercepted and execute through heavily opti-
mized trace handlers. Pictured is the original execution of the event trace
and the interception of that trace with a trace handler. In a full example,
multiple traces are optimized with each trace having its own trace condition
and handler. In addition there are traces starting also at the top of the
protocol stack.

33

Our methodology focuses on the common execution paths of commu-
nication systems. The first step in optimizing the common path involves
identifying it. The old adage, “90% of the time is spent in 10% of a pro-
gram,” suggests that most programs have common paths, even though it is
often difficult to find the common path. However, carefully designed systems
often do a good job in exposing this path. In layered communication systems,
the designer is often able to identify the normal case for individual protocols
and these cases can be composed together to arrive at global sequences of
operations. It is these sequences, or event traces, that we focus on as the
basic unit of execution and optimization. For each event trace, we identify
a condition which must hold for the trace to be enabled, and a handler that
executes all of the operations in the trace. For the purposes of optimization,
we introduce three more components to the layering model (see Figure 3.2):

e Fuvent traces are sequences of operations in a protocol stack. In partic-
ular, we use the term to refer to the traces that arise in the “normal
case.” An event trace begins with the introduction of a single event
into a protocol stack. The trace continues through the various layers,
where other events may be spawned either up or down. Often, a trace
may be scheduled in various ways. It is assumed that one of these
schedules is chosen for a particular trace.

e Trace conditions determine which event trace will be executed. This
consists of a predicate on the local states of the layers in a protocol
stack and on an event about to be introduced to the stack. If the
predicate is true then the layers will execute the corresponding trace
as a result of the event.

e Trace handlers is separate code that executes the sequence of opera-
tions in a particular event trace. If the trace condition holds for a trace
handler, then executing the handler will be equivalent to executing the
normal operations within the protocol layers.

For example, consider a type of event trace that occurs in many protocol
stacks. When there are no abnormalities in the system, sending a message
through a protocol stack often involves passing a send event straight through
the protocol stack from one layer to the next. If messages are delivered
reliably and in order by the network, then the actions at the receive side
involve a receive event filtering directly up from the network, through the

34

layers, to the application. Such an event trace is depicted in Figure 3.2. Both
the send and receive event traces are called linear traces because (1) they
involve only single events, and (2) they move in a single direction through
the protocol stacks. The trace in Figure 3.2 enters the bottom of the stack
and travels directly up through the protocol stack.

3.3.1 Complex event traces

Many protocol stacks have event traces which are not linear. Non-linear
traces have multiple events that are passed in both directions through the
protocol stack. Non-linear event traces are important because they occur in
many protocol stacks. Examples of where they occur include token-based
total ordering protocols, broadcast stability detection protocols, and hierar-
chical broadcast protocols. We will describe an example routing protocol in
more detail below. Without support for such traces, such stacks could not
be optimized.

A hierarchical routing protocol is one in which a broadcast to many des-
tinations is implemented through a spanning tree of the destinations. The
initiator sends the message to its neighbors in the tree, who then forward it
to their children, and so on until it gets to the leaves of the tree which do not
forward the message. Some of the traces in a hierarchical routing protocol
would include the following, the first two of which are linear and the last of
which is non-linear:

1. Sending a message is a linear trace down the protocol stack.

2. If a receiver is a leaf of the routing tree, then the receipt is a linear
trace up through the stack.

3. If areceiver is not a leaf of the tree, the receipt will be a trace where: (1)
the receive event is passed up to the routing protocol, (2) the receive
event continues up to the application, and (3) another send event is
passed down from the routing protocol to pass the message to the
children at the next level of the tree (see Figure 3.3).

Determining event traces requires some annotation by protocol design-
ers. They must identify the normal cases in the protocol layers, mark the
conditions that must hold, and identify the protocol operations that are ex-
ecuted. From this, the traces can be generated by composing the common

35

Delivery to application

Routing layer D |:| ! D
i
m_
*S

Receipt from Forward to
network next destinations

Figure 3.3: A complex, non-linear trace in a routing protocol stack. A mes-
sage is receive from the network and passed to the routing layer. The routing
layer forwards a copy down to the next destination and passes a copy to the
network.

36

cases across multiple layers. Note that entire layers are not being annotated
and no additional code is being written: the annotation is done only for the
common cases, which are usually a small portion of a protocol layer.

Given the event traces of a protocol stack, we can build alternative ver-
sions of the code executed during those traces and modify the system so that
before introducing an event into a protocol stack, the event conditions are
checked to see if any are enabled. If not, the event is executed in the pro-
tocol stack in the normal fashion, and the checking has slowed the protocol
down a little. If a trace condition holds, then the normal event execution
is intercepted and we execute the trace handler instead. The performance
improvement then depends on the percentage of events for which the trace
condition is enabled, the overhead of checking the conditions, and how much
faster the trace handler is.

The use of a trace handler assumes that there are no other events pending
at the layers in the stack. If we assume the layering model (presented in
Section 2.1.9) is implemented by pairs of event queues between layers, then
the problem occurs if an event handler is executed when there are events in
the intervening event queues. The event handler violates the layering model
because the events in the trace would be executed out of order with regard
to the previously enqueued event. Our solution to this problem relies on the
flexibility of the layering model, and works by using a special event scheduler
that executes all pending events to completion before injecting the next event
(this is described in Chapter 5).

The transformation of the protocol stack maintains correctness of the
protocols because trace handlers execute exactly the same operations as could
occur in the normal operation of the protocol layers. If the original protocols
were correct, then the trace protocols are too. This leverages off of the
layering model in several ways. The first is that the layers are allowed to
interact with their environment only through event communication. Thus we
know that all of a layer’s protocol is contained in its event communication and
state updates. The second is that the layering model allows the operations
executed by the layer to be executed in any fashion as long as it is equivalent
to a legal scheduling of the events.

37

3.4 Optimizing Event Traces

The previous section described the general technique of extracting common
paths as event traces. This section describes how these event traces are then
optimized. We divide these optimizations into three classes: members of the
first improve the speed of the computation; the second compress the size of
message headers; and the third reorder operations to improve communication
latency, without affecting the amount of computation.

3.4.1 Optimizing computation

The first optimizations are those that improve the performance of the com-
putation in event handlers. The general approach here is to carry out a set
of transformations to the protocol stack in order that traditional compilation
techniques can be effectively applied.

First pass: extract the source code

The first step extracts the source code for the trace condition and trace
handler from the protocol layers. We break the operations of a stack into two
types: protocol and layering operations. Protocol operations are those that
are directly related to implementing a protocol. These include operations
such as message manipulations and state updates. Layering operations are
those that result from the use of layered protocols. These include the costs
of scheduling the event queues and the function call overhead from all the
layers’ event handlers. Layering operations are not strictly necessary because
they are not part of the protocols. Given an event trace and annotated
protocol layers, we use the annotations to textually extract from each layer
the protocol operations for the trace.

Second pass: eliminate intermediate data structures

The second step removes the explicit use of events in the protocol layers.
As described earlier, events are used to pass information between protocol
layers. Each event must be allocated, initialized, and later released. Event
traces encompass the life of the initial event and all spawned events so the
contents of the events can be kept in local variables within the trace handler,
which compilers are often able to place in registers.

38

As an example, consider a trace handler implemented in the C program-
ming language (in ML this transformation is even simpler, but we present
the case for C to demonstrate that that these optimizations are language-
neutral). After extracting a trace handler, we end up with a function that
allocates, initializes, and frees one or more events during each call to the
function:

trace_handler(...) {
event_t *ev ;
ev = malloc(sizeof (event_t)) ;
ev.type = Cast ;
if (ev.type == Cast) {
}else { ... }

free(ev) ;

It is a moderately simple transformation to detect that the event allocated
at the beginning of the function does not escape from the function and so
can be allocated as a variable local to the function:

trace_handler(...) {
event_t ev ;
ev.type = Cast ;
if (ev.type == Cast) {

}else { ... }

3

A further optimization involves only allocating portions of the event that
are actually used. For instance, suppose that only the type field is accessed
in the ev variable. In such a case, we can just allocate a variable for the
type field:

39

trace_handler(...) {
event_type ev_type ;
ev_type = Cast ;
if (ev_type == Cast) {

} else £ ... }

}

Third pass: inline functions

The third step completely inlines all functions called from the trace handler.
The payoff for inlining is quite large because the trace handlers form almost
all of the execution profile of the system. Normally, code explosion is an im-
portant concern when inlining functions. However, code explosion is not an
issue in this case because of several factors. There are only a small number of
trace handlers which are each normally not too large: the inlining is focussed
on a small part of the system so code growth will not be large. Also, the
functions called from trace handlers are normally simple operations on ab-
stract data types, such as adding or removing messages from buffers. These
functions are not recursive and do not call many other nested functions, so
fully inlining them typically adds only a fixed amount of code.

Fourth pass: traditional optimizations

The fourth step is to apply traditional optimizations to the trace handlers.
These can be very effective because the previous passes create large basic
blocks which compilers can optimize a great deal. In particular, constant
folding and dead-code elimination can be effective due to the elimination of
events. For instance, if one protocol layer marks an event record’s field with
some flag to cause an operation to happen at another layer, this constant
value can be propagated through the trace handler so that the flag is never
set at the first layer or checked at the second layer.

Continuing the example above, this optimization would propagate the
value of the ev_type field to the conditional test, which in turn allows the
else clause to be removed through dead code elimination.

40

3.4.2 Compressing protocol headers

The second class of optimization reduces the size of headers. The protocol
layers in a stack push headers onto a message which are later popped off by
the peer layer at the destination. We divide these headers into three classes,
two of which we compress.

e Addressing headers are used for routing messages (they include ad-
dresses and other identifiers). They are treated opaquely: i.e., pro-
tocols are only interested in testing these headers for equality. These
can be compressed through so-called path or connection identifiers, as
described below.

e (lonstant headers include headers that are one of several enumerated
constant values and specify the “type” of the message. For instance, a
reliable transmission protocol may mark messages as being “data” or as
“acknowledgments” with a constant header, and from this the receiver
knows how to treat the message. These headers are compressed by our
approach when they appear in the common path.

e Non-constant headers include all other headers, such as sequence num-
bers or headers used in negotiating reconfigurations. These are not
compressed.

Protocol headers are compressed by using connection identifiers [vR96,
Kay95, Jac90]. Connection identifiers are tuples containing addressing head-
ers which do not change very often. These tuples are hashed into 32-bit values
which are then used with hash tables to route messages to protocol stacks.
MD5 (a cryptographic one-way hash function) is used to make hashing col-
lisions very unlikely, and other techniques can be used to protect against
collisions when they occur. The use of connection identifiers compresses
many addressing headers into a single small value and all messages benefit
from this compression. Although the main benefit of header compression is
to improve bandwidth efficiency, small headers also contribute to improved
performance in transmitting the messages on the underlying network and in
the protocols themselves because less data is being moved around. We
extend connection identifiers to contain an additional field called the “mul-
tiplexing index.” This field is used to multiplex several virtual channels over
a single channel. This use of connection identifiers allows constant headers

41

to be compressed along with addressing headers. The constant headers in
a trace handler are statically determined, a virtual channel is generated for
that trace handler, and the constant headers are embedded in the code of
the receiving trace handler.

Header compression significantly reduces the header overhead of the pro-
tocol layers. Even though each of the constant headers is quite small, the
costs involved in pushing and popping them becomes significant in large
protocol stacks. In addition, by encoding the constant values in the trace
code, standard compiler optimizations such as constant folding and dead
code elimination are possible. As an example, consider protocols in Ensem-
ble. In many protocol stacks (including ones with more than 10 protocol
layers), traces often only contain one non-constant field. Without trace op-
timizations, these headers add up to 50 bytes. With compression, the total
header size decreases to 8 bytes. 4 bytes are a connection identifier. The
other 4 bytes are a sequence number (for instance). There is not much room
for improvement. This 8 byte header can be compared with those in similar
communication protocols, such as TCP (40 bytes, 20 bytes for TCP with
header compression)!, ISIS [BvR94] (over 80 bytes), and Horus [vRBM96]
(over 50 bytes).

Two related problems arise when additional header formats are intro-
duced to protocol stacks that expect only a single format. The first problem
occurs when a trace condition is not enabled for a message received with com-
pressed headers (for example, out-of-order messages may not be supported by
trace handlers). The message must be passed to the normal execution of the
protocol but the message is not in the normal format. The second problem
occurs when a trace handler inserts a message into a buffer and a protocol
layer later accesses the message. The solution in both cases is to lazily re-
format messages. Messages are reformatted by functions which regenerate
constant fields and move non-constant fields to their normal location in the
message. These reformatting functions can be generated automatically. For
the first problem, the message is reformatted before being passed to the nor-

!Comparison with TCP and the TCP with header compression is more
complicated than this. For instance, 20 bytes of the 40 byte TCP header is
the IP header, which is overhead Ensemble also has when running over IP.
In addition, TCP header compression is targeted toward serial links which
allows more compression than is possible in the general case.

42

mal protocol stack. The protocol layers get the message as though it were
delivered in the standard format.

In order to manage buffers containing messages in different formats, each
message is marked as normal or compressed. Compressed messages are
buffered along with their reformatting function. When a protocol accesses a
compressed message, it calls the function to reformat the message. For most
protocols, the normal case is for a message to be buffered and later released
without further accesses. Lazy reformatting is efficient in these cases because
messages are buffered in compressed form. Handling these buffers requires
some modification of the protocol layers, but the modification is required
only in layers with message buffers, and even then the modification is sim-
ple. The reformatting function needs to be stored with compressed messages,
but this cost is offset by the decreased size of messages being buffered.

3.4.3 Delayed processing

The final class of optimizations improves the latency of the trace handlers
without decreasing the amount of computation. The approach in [vR96]
relies heavily on this class of optimization, whereas in our work this opti-
mizations is made in addition to others that are more significant in our case.
When a message is sent, there are some operations (such as determining a
message’s sequence number) which must be done before the message may
be transmitted, and some which may be delayed until after the transmission
(such as buffering the message). Similarly, at the receiver, some operations
are delayed until after message delivery. The effect of reordering operations is
to decrease the communication latency, but not the amount of computation
done.

Fully automating delayed operations is a difficult problem, requiring some
form of data flow analysis to determine which operations can be delayed while
still retaining correctness. However, protocols can be annotated to specify
which operations can and cannot be delayed.

3.5 Performance

An implementation of an automated protocol compiler for the Ensemble com-
munication system is underway for the optimizations described above. Al-

43

Table 3.1: Performance comparisons for various protocol stacks.

‘ version ‘ code-latency ‘ delayed ops ‘ headers ‘
normal 1500us none 20 bytes
trace/ML | 41us 28 — 63us | 8 bytes
trace/C | 26us 37us 8 bytes

though currently we do not automatically generate trace protocols, we have
constructed trace protocols by hand in a fashion that can be readily auto-
mated.

The protocols measured here implement FIFO virtual synchrony [vRBM96,
BJ87] and consist of 10 or more protocol layers. In particular, the application
has at least 10 layers below it. All the performance measurements are made
on groups with 2 members, where the properties are roughly equivalent to
those of TCP. Actual communication is over point-to-point (UDP or ATM)
or multicast (IP Multicast) transports that provide best-effort delivery and
a checksum facility. As we are interested in the overheads introduced by our
protocols, our measurements are only of the code-latency of our protocols
with the latencies of the underlying transports subtracted out. We focus on
two measurements in this analysis. The first is the time between receiving
a message from the network and sending another message on the network,
where the application does minimal work. This is called the protocol code-
latency. The second measurement is the time it takes to complete the delayed
operations after one receive and one send operation. This is the amount of
computation that is removed from the common path by delaying operations.
All measurements were made on Sparcstation 20s with 4 byte messages. Mea-
surements are given for three protocol stacks: the unoptimized protocols, the
optimized protocols entirely in ML, and the optimized protocols where the
trace conditions and handlers have been rewritten in C. See Table 3.1. The
optimizations decrease the code latency from 1500us to 26us, a xX57 im-
provement. Including also the delayed operations, the improvement is x23.
The C version of the protocol stacks has approximately 5us of overhead in
the code-latency from parts of the Ensemble infrastructure that are in ML.
These could be further optimized by rewriting this infrastructure in C. There
are no delayed operations in the unoptimized protocol stack.

44

The time line for one round-trip of the C protocol is depicted in Figure 3.4.
Two Sparcstation 20s are communicating over an ATM network using U-net
[BBVVEQ5] which has one-way latencies of 35us. At Ous, process A receives
a message from process B off the network. 26us later the application has
received the message and the next message is sent on the network. At 61us,
process B receives the message and sends the next message at time 87us.
Process A completes its delayed updates by time 62us. The total round-trip
time is 122us, of which Ensemble contributes 52us.

We carry out the experiments using groups of size 2 in order to be able
draw comparisons with point-to-point protocol optimizations. Increasing the
size of the group does not affect the normal case operation of sending and
receiving messages in the protocols here because all of the operations take
constant time in the size of the group. There are some background compu-
tations that grow in cost with the size of the group, but these do not occur
in code paths measured above.

3.5.1 Comparison with Horus Protocol Accelerator

The Protocol Accelerator [vR96] achieves code-latencies of 50us for protocol
stacks of 5 layers (on a similar platform). The total time required for pre-
and post-processing one message send and one message receive operation
is approximately 170us, with a header overhead of 16 bytes. This can be
compared to code-latencies of 26 s in Ensemble, protocol headers of 8 bytes,
and total processing overhead for a receive followed by a send of 63us, with
a protocol stack that has more than twice as many layers. In addition, there
are other advantages of this approach over that of the Protocol Accelerator:

e This approach decreases actual computation and layering overhead in
addition to latency. While latencies of both approaches are compa-
rable, the computational overhead is significantly smaller through our
compilation techniques.

e These optimizations can be applied to a larger class of protocols than
that of the Protocol Accelerator, including routing and total ordering
protocols.

e The Protocol Accelerator approach requires significant structural mod-
ifications to protocols. Our approach requires less annotation. We have
demonstrated the use of our approach on a full-sized system.

45

e The primary requirement of our approach is the use of a strict layering
model. The optimizations are not a necessary part of the layering
model: protocol layers execute with or without the optimizations. This
simplifies development because many optimization issues only need to
be considered in the final stages of development.

3.6 Conclusion

This chapter began by introducing the question of how to achieve high per-
formance in layered communication systems. After describing the causes of
this performance inefficiency, the answer to this question was presented in
several steps.

First, we argued that the layering architecture was crucial to our ability
to perform optimizations that reduce or eliminate overheads. The layering
architecture should provide an execution model in which the interactions of
protocol layers with their environment is carefully controlled to enable one
to reason about the correctness of cross-layer transformations.

Second, we presented a sequence of optimizations that focussed on the
small numbers of code paths (or traces) that are commonly executed. The
optimization steps extract these code paths and then proceed to eliminate
the processing and header overheads in these traces.

Chapter 5 shows how these optimization strategies can be formalized
in a theorem prover and describes work in progress in implementing the
optimizations in this fashion.

46

°\>

Code
Latency

Delayed
Operations

— 63— — 61 ——

Code
Latency

Round — 87 ——
Trip
Latency

— 122 —

Figure 3.4: Round-trip latency time-line between two processes. Vertical
scale is in ps.

47

Chapter 4

Impact of Using ML

This chapter addresses questions that revolve around the role of advanced
programming languages such as ML in the design and implementation of
communication systems. In particular, we are concerned with determining
the impact that the use of MLL had on Ensemble. This includes questions
such as: where did ML aid in the design and implementation of Ensemble,
how did it help or hinder in achieving high performance, does ML provide
sufficient support for managing low-level details of the system, how did the
implementation in ML compare with the previous system implementations in
C, and how can ML be improved to better support system-style applications?

This chapter proceeds as follows. Section 4.1 related related work. Sec-
tion 4.2 describes Objective Caml, the implementation of ML we use. Sec-
tion 4.3 compares the implementations of Horus and Ensemble. Section 4.4
describes how messages are represented in Ensemble. Section 4.5 addresses
issues with message buffers, which we needed to manage explicitly. Sec-
tion 4.6 shows how inlining in ML can allow systems-style applications to
make extensive use of abstraction barriers with very little cost. We then
conclude with a summary of our lessons and a list of features which we feel
are missing from ML.

48

4.1 Related work

Related work has been done in the Fox project [BHLM94] which demon-
strated the use of ML for systems programming. They developed a complete
TCP protocol stack in ML! that interfaces very closely with the network.
However, Fox and Ensemble differ significantly. First, the Fox project imple-
ments TCP, which is a standard protocol, and so is constrained in many ways
that Ensemble is not. For instance, TCP has fixed header formats that Fox
TCP must adhere to, whereas Ensemble is free to set its own header formats
and to change them as the system evolves (this issue is discussed at length in
Section 4.4.1). In addition, the Fox design is deliberately very similar to TCP
implementations in C because the developers wished to show that systems
can be built in ML in a fashion similar to C. Ensemble, on the other hand,
was not restricted in this fashion. One result of these differences was that
Ensemble was able to achieve better performance than the implementation
of Horus written in C, whereas the Fox TCP implementation is slower than
implementations of TCP in C.

Other related work has been done with Erlang [AWWV96, Hau94]. Er-
lang, a product of Ericsson, is a functional language designed to support
distributed telephone switching software. A number of impressive telecom-
munications products have been built using Erlang and they have found many
of same advantages of using functional languages for distributed communi-
cation that we have. Erlang does not support static type checking, although
there are several efforts underway to add this to the language. The approach
with Erlang was to design a new language with support for distribution,
whereas our approach has been to build libraries in an existing language.

4.2 Objective Caml

We use the Objective Caml (Ocaml) system [Ler97] which implements its
own sub-dialect of the CAML [WL93] dialect of ML. Although this chapter
is intended to be general, it is important to distinguish between the ML

'Fox uses Standard ML of NJ, whereas the implementation of ML we use
is Objective Caml

49

family of programming languages and the particular implementation that
we use. For instance, Standard ML is a language, Standard ML of NJ and
Harlequin ML Works are implementations, and Ocaml is both a language
and an implementation. The languages and implementations differ widely in
number of ways. In this section, we briefly describe the Ocaml system, some
features particular to Ocaml, and our experiences with it, both positive and
negative.

4.2.1 Portability

The Ocaml system is actually two compilers. The first is a bytecode code
compiler that provides rapid compilation, platform-independent bytecode,
and good performance. The second is a native code compiler that gives
slower compilation but generates higher-performance code. The compilers
are interchangeable and run on a large number of platforms, including Win-
dows N'T, Windows 95, and most variants of UNIX. Porting Ensemble to new
platforms has usually not involved modifying ML code, but revolved around
issues outside of the control of the ML compiler (such as incompatibilities
in the “make” program). The native code compiler provides very good per-
formance. It gives efficient support for curried functions and support for
inlining within and across module boundaries. We give a detailed example
of the optimizations in Section 4.6. Other notable features of the system are
a large library of UNIX system calls, support for automated marshalling of
data structures, and features for object oriented programming?.

4.2.2 Performance considerations

In designing Ensemble, we were careful to restrict the use of certain features
that can hurt performance. As an example, consider higher-order functions.
They have the problem that their use often requires allocation of closures
(closures are dynamically generated function objects). Higher-order func-
tions are used extensively in Ensemble, but only so that closures are not
allocated in the normal case. Two techniques were used to achieve this. The
first was a phased approach where closures are created when protocol stacks
are initialized, but not during their normal execution. This technique is sim-
ilar to one described in [BHLM94]. The second way was to use higher-order

2Ensemble does not use Ocaml’s object oriented features

50

iterators for data structures such as list and array iterators. These are effi-
cient because inlining of the iterator can eliminate closure allocation®. Thus
the creation of closures only appears outside common execution paths or in

ways that can be easily optimized.

4.2.3 Memory management

Ocaml supports garbage collected memory management. Although some ML
implementations are perceived to require large amounts of memory [Mac93],
the Ocaml system is known for its efficient use of memory and this has
not been a problem for us. Ocaml uses a generational garbage collector
with a stop-and-copy minor heap and an incremental mark-and-sweep major
heap. Our experiences with the garbage collector have been positive, with
two exceptions. The first is that there is no support for compacting the
major heap, which means that long-running programs never release memory
from the major heap. This causes problems with highly available server
applications that run for weeks at a time (and longer)*. The other exception
is that the major heap does not do a good job of managing large objects and
tends to fragment over time. This problem was observed with the message
buffers that Ensemble uses and eventually caused us to manage them through
explicit reference counting (see Section 4.4.2 for more details). In summary,
we found the Ocaml garbage collector extremely useful for almost all our data
structures, but for some we had to take over and manage them ourselves.

4.2.4 Interoperability

Ocaml provides support for easily interfacing with C programs. ML pro-
grams can issue cross-language calls to C functions and vice-versa. In both
cases, exceptions are handled correctly across any number of calls into and
out of C. ML objects can incorporate pointers to C objects outside the heap
and C code can declare references to ML objects in the heap. With this sup-
port, we implemented a C interface to the Ensemble system. This required
writing a set of C stub routines for calling into Ocaml code. In addition, at

3The Ocaml compiler currently does not do this.

“The next version of Ocaml, which has been released since writing this,
now supports compaction. This was also added in part because of the prob-
lems we reported running into.

o1

our prodding, the Ocaml implementors added the capability to generate C
libraries from ML programs. This allows Ensemble to be built as a normal
C library and linked with C programs. The Ensemble library can then be
treated as a black box from C code which does not need to know that ML
was used.

Although it is not difficult to link ML and C programs in this manner,
we have noticed that memory errors in C programs can easily corrupt the
ML heap, which then usually causes the entire process to crash. C programs
by chance may not access their own corrupted data structures, but the ML
heap is regularly traversed by the garbage collector, so corruption of the
heap is likely to result in a process failure. From the point of view of a C
developer, even though the bugs in such cases are in the C code, the use
of ML makes the entire program more “fragile” and makes tracking down
problems in the C portion more difficult. This problem is compounded by
the fact that most C debugging tools are unable to handle the ML heap.
In the case of Ensemble, we avoid this problem by providing two versions
of the C interface that appear identical to the application. The first, the
“inboard” version, includes Ensemble and the ML runtime in the C process.
This version provides the best performance, but exhibits fragile behavior
when the C program is buggy. With the second, the “outboard” version, the
C program and Ensemble execute in separate processes which communicate
via UNIX pipes. This version is used while debugging applications because
it isolates the ML heap from application errors.

4.2.5 Debugging and profiling

Until recently, Ocaml did not provide a debugger, which occasionally made
debugging difficult. However, we found many of the hardest problems to
debug in C, such as memory errors, are prevented by the ML type checker,
and so the impact of a missing debugger is somewhat reduced. A continuing
problem, however, is the difficulty of profiling memory behavior of ML pro-
grams (normal C tools can be used for standard execution profiling). While
predicting the operations that cause memory allocation is usually easy in
Ocaml programs, it is much more difficult to get a good picture of the overall
memory allocation patterns in programs. Other systems, such as Harlequin’s
Standard ML environment [Har96|, provide support for profiling memory us-
age, so this kind of support is certainly possible.

92

4.2.6 Summary

Our experience with Ocaml has been generally positive. It has provided a
stable platform for us, and when there have been bugs in the system, the
implementors have been quick to respond with fixes. Our success with ML
is due in no small part to the excellent job of the Ocaml developers.

4.3 Comparing C and ML implementations

The similarities of Horus and Ensemble allows us to draw a variety of com-
parisons between the systems in order to better understand the impact of
ML. We begin by discussing why it is reasonable to compare the two sys-
tems, and then present a variety of comparisons, from more to less concrete.
Throughout these comparisons, keep in mind that for all their similarities,
Ensemble and Horus are different in many ways. Ensemble supports almost
all the functionality that Horus does and many things Horus does not, but
the functionality of Ensemble is still neither a superset nor a subset of Ho-
rus. The design of Ensemble embodies many lessons we learned from Horus.
Were we to rewrite Ensemble in C, we would probably arrive at a system
closer to Ensemble than Horus, even with differences in the programming
languages. Also note that both Horus and Ensemble are highly modular sys-
tems and each have many different configurations. In comparing them, we
have attempted to match comparable configurations where possible.

4.3.1 Development times

Both Ensemble and Horus were developed primarily by single (though differ-
ent) programmers and contributions from the research group were primarily
made in the form of additional protocol layers or interfaces to support ad-
ditional programming languages. Horus was actively developed for 2 years.
Ensemble has been under development for 1.5 years.

4.3.2 Language interfaces

Both Ensemble and Horus are intended to be able to fit a variety of interfaces
and to be used from many programming languages, so a consideration in our
switching to use ML was the question of how accessible the system would be

23

to programs written in C. As described above in Section 4.2, Ocaml provides
adequate support for interfacing with C. In addition to C, C++, Tel/Tk,
and CORBA [Maf95], which are supported by Horus, Ensemble also supports
Smalltalk, Ada, and (of course) ML.

4.3.3 Supported platforms

Both Ensemble and Horus seek to be largely platform-independent. Horus
is supported on a variety of UNIX platforms and a smattering of other op-
erating systems such as Chorus and Mach. Supporting new platforms for
Horus requires writing some low-level system calls to access platform-specific
thread and messaging operations. Ensemble runs on all platforms supported
by Ocaml, including practically all UNIX platforms and Windows 95 and
Windows NT. The use of ML has meant for us that porting issues are largely
left to the ML compiler. For instance, there are some platforms (IBM AIX
and Hewlett Packard HPUX) that were too bothersome to support for Horus
that are supported by Ensemble because it is no trouble to do so.

The Ensemble software distribution includes a pre-compiled ML bytecode
library that can be used on all supported platforms. A user downloading En-
semble on any platform merely compiles the demonstration programs (or
their own programs) and links with the platform-independent bytecode li-
braries we provide. The platform-dependent, native-code libraries are only
compiled if bytecode execution provides insufficient performance.

4.3.4 Multi-threading

Horus is a heavily threaded system. Every message received from the network
causes a new thread to be created to handle it. In addition, every time a
message is passed up in a protocol stack a new thread is also forked to handle
that. However, optimizations are made so that in many cases the previous
thread is recycled instead of forking an entirely new thread.

The issues related to threads in Ensemble are somewhat more subtle be-
cause its architecture is more flexible than Horus’. Although Ensemble is
single threaded, there are a number of ways to introduce threads to the sys-
tem. For instance, the C interface to Ensemble introduces C threads for the
application, while Ensemble executes on in a single thread. In addition, each
Ensemble protocol stack can optionally be configured to use a threaded im-
plementation of the layering model (similar to Horus’) instead of the default

o4

event-queue implementation.

However, one issue that has caused difficulty is that ML and C programs
executing in a threaded environment are not as well supported as in single-
threaded environments. In the absence of threads, C code can call into ML
code and vice-versa. With threads, these inter-language interactions have to
be more carefully managed because, in general, C code cannot call into ML
code.

4.3.5 Sizes of executables

Ensemble and Horus executable binaries are approximately 880K and 400K
bytes, respectively. These numbers are of course dependent on the platform,
compiler, and level of optimization. We took the size of the stripped (i.e.,
without debugging symbol information) binaries for the default optimization
level of the systems on Sparcstations running Solaris 2.5. For Ensemble, we
give the size of the native code binaries. The bytecode binaries are 700K
bytes. We believe the reason bytecode is not much smaller than native code
is that Ocaml uses a 32-bit bytecodes.

4.3.6 Memory requirements

Ensemble and Horus have roughly similar memory requirements. At initial-
ization, Ensemble processes with no protocol stacks use 91K bytes on the
ML heap. In a similar configuration, Horus begins with 73K bytes on its
heap. Each group joined by a process adds 7.8 K bytes with Ensemble and
11K bytes with Horus. When the stacks become active (for a non-intensive
application), the heap may grow to around .5M bytes for Ensemble and
1.5M bytes for Horus. The resident set sizes for these processes (again for
a non-intensive application) are around 1.5M bytes for Ensemble and 2.5M
bytes for Horus. We believe the additional space used for Horus is caused by
the use of preallocated thread stacks (Horus protocols make extensive use of
threads, while Ensemble is single-threaded by default).

4.3.7 Performance

Both Ensemble and Horus have very good performance. When transmit-
ting 1K messages on Sparcstation 20’s, both Ensemble and Horus are easily
able to use the available bandwidth of a 10M bit Ethernet. In order to

95

compare the efficiency of the common code paths in both systems, a good
measurement is the application to application latency. On Sparcstation 20’s,
Ensemble (compiled as native code) achieves a one-way latency of 595us
and in a similar configuration Horus has 700us. In this configuration, the
overhead of the network is 355us, so the latency induced by Horus is 345us
and that of the Ensemble is 240us. Garbage collection has a minimal im-
pact on performance because Ensemble allocates very little memory on the
heap in the normal cases for sending and receiving messages, and none of the
normal-case allocation gets promoted to the major heap.

With the optimizations described in Chapter 3, the overhead for Ensemble
drops to 41us. These same optimizations could be applied to Horus to achieve
a similar speedup. However, many of the architectural improvements made
to Ensemble would have to be replicated in Horus first, which would probably
necessitate extensive rewriting.

4.3.8 Line counts

Line counts are another useful characteristic for comparison even though
comparisons of sizes of source code depend a large amount on factors such as
the coding style of the programmers. See Table 4.1 for a number of different
line count comparisons. All line counts are raw (comments have not been
stripped) and include both implementation and interface files (i.e., .c and .h
files, respectively, for C).

e Total lines is the total number of lines in each system, including demon-
stration programs. This gives a sense of the overall sizes, but otherwise
contains little information for useful comparison. Ensemble has con-
siderably more demonstration programs than Horus. The bulk of the
C code listed for Ensemble is for C/C++ interfaces, associated testing
code, and an interface to the Electra CORBA-based replicated object
system [Maf95]. No C code is actually needed to run Ensemble be-
cause the Ocaml UNIX library provides stubs for all needed system
calls. However, Ensemble comes with its own set of UNIX stubs that
can optionally be used to improve performance. These stubs amount
to about 1000 lines of C code.

o (lore lines is an estimate of the size of the core components in a stripped
down system. This is what is needed to get standard configurations of
each system running. Only minimal sets of protocol layers and none

26

Table 4.1: Comparison of lines of code in Ensemble and Horus. See text for
explanation.

| measurement | Ensemble (ML) | Horus (C) |
total lines 45873 (+ 11000 C) 140000
core lines ~ 17000 ~ 35000
protocol lines 10692 79000
average lines per protocol 198 1519
platform-dependent lines 0 27020

of the external language interfaces are included. For Horus, we only
include the machine dependent code for a standard UNIX system. This
measurement gives a more focussed picture of the code sizes of both
systems.

e Protocol lines is the total number of lines of protocol layers. Both
systems have around 55 layers. This measurement is very important
because the protocol layers are the most complex parts of each system,
and smaller layers tend to be easier to develop, debug, comprehend,
verify, and maintain. Protocol layers coded in ML are significantly
smaller than those coded in C. This is discussed in more detail below.

e Platform-dependent lines is a count of lines of code used on a subset
of the supported platforms. For Horus, this consists primarily of code
for accessing system-dependent threads and messaging operations. En-
semble, which is unthreaded by default, has effectively no such code
(there is a little to work around idiosyncrasies of Windows 95 and
NT), whereas Horus has a large amount. This is significant because
platform-dependent code often creates software maintenance problems.

4.3.9 Sizes of protocol layers

While the Horus and Ensemble infrastructures have diverged a good deal,
they retain the same basic layered architecture. Many layers or collections
of layers have direct analogues in both systems, thus allowing comparisons

57

Table 4.2: Size comparisons of comparable Horus and Ensemble protocols.

| C-layer | ML-layer(s) | C-lines | ML-lines | factor |
Frag Frag 900 176 5.1
Problem | Suspect 1389 128 10.8
Stable Stable 1639 318 5.2
Credit Credit 2367 435 5.4
Mbrshp | Inter:Intra:Leave:Merge:Elect | 5134 911 5.6

of their number of lines. In general, the “important” protocol layers in En-
semble are about a factor of 5 times smaller in lines than those in Horus. See
Table 4.2 for a table of sizes of comparable layers (or sets of layers) from both
systems. Some of the differences in size can be attributed to differences in
the language used, but some also to an overhaul in Ensemble of the general
layering structure in Horus. For instance, Horus layers interact directly with
thread and synchronization operations, whereas in Ensemble the infrastruc-
ture handles synchronization for all layers. If Ensemble were to be recoded
in C, the sizes of the resulting layers would be significantly smaller than the
Horus layers.

This said, we believe that the decrease in code size is also due in part to
the use of ML as a programming language. There are several ways in which
the programming language has had an impact. The first is that almost all
data structures in Ensemble are managed automatically by ML. The explicit
management of memory in Horus requires a large amount of code. The
second is the better set of facilities in ML for abstraction, which encourages
structural changes that result in decreased code size. Examples of this in-
clude the use of polymorphic abstract data types and higher order functions.
The third is the ability to manipulate messages with standard language fa-
cilities such as pattern matching. Most communication systems use a special
set of operators for manipulating messages because the contents must be
linearized (marshalled) before transmission. Instead of treating messages as
sequences of bytes, Ensemble uses ML data structures for all headers and
linearizes them with an automatic marshalling facility provided by Ocaml.
Not surprisingly, raising the abstraction level for Ensemble’s core data type,
messages, leads to significant reductions in code size.

98

4.3.10 Bugs

The way we use ML prevents many kinds of bugs from occurring. For in-
stance, when programmers add fields to the headers of protocol layers in
Horus, they have to go through the protocols looking for all cases where a
change needs to be made. In Ensemble, the headers are normal ML data
structures, and this allows the compiler to detect and signal inconsistencies
through its type checker. In addition, the ML marshaller handles converting
the headers into byte sequences for transmission on the network, so incom-
patibilities in byte ordering and word size are transparent to protocol layers
in Ensemble. A user recently compiled and ran Ensemble on a machine with a
64-bit word size for the first time we are aware and encountered no problems.
These kinds of problems were a constant concern in Horus. Bugs in Ensem-
ble are generally bugs in the protocol logic and not memory management or
message formatting errors.

4.3.11 Evolution

Even though difficult to quantify, an important system characteristic is the
ability to evolve. Both Horus and Ensemble are research systems that were
intended in part to be toolkits to facilitate research in new protocol archi-
tectures. Our experience with Horus was that it did evolve a great deal for
some time . However, it became increasingly difficult to make changes to the
system. We believe this is because Horus became over-engineered generating
a web of interdependencies. Often, these dependencies had to do with details
of memory management or other issues that do not arise in ML. Ensemble
has continued to evolve, often in dramatic ways. A detailed description of
the evolution of one part is in Section 4.5, but there are many other similar
examples.

4.4 Messages

As we pointed out in Chapter 2, messages are a central data structure of
Ensemble and their implementation is an important practical concern. The
approach we have taken in Ensemble is to use a low-level byte representation
for the message payload and to use normal ML data structures for protocol
headers. Thus, messages have two parts: payload and headers. The payload
consists of sequence of bytes, but the headers are regular ML data structures.

29

/* total.c Message Headers */
struct to_header {

uint8_t type;

uint8_t flags;

uintl6_t dest;

uint32_t token;
};

enum to_message_type {
TO_TOKEN_REQUEST,
TO_TOKEN,
TO_DATA,
TO_UNORDERED

Figure 4.1: Example of headers in Horus: type definitions.

The use of ML objects for headers is an important design feature of Ensemble
and a departure from many previous communication systems. This design
means that the payloads (which most affect performance but which protocols
typically do not access) have an efficient implementation, while the protocol
headers (which protocol layers manipulate a great deal) benefit from features
of ML.

4.4.1 Protocol Headers

In Ensemble, each protocol layer has a data type for the headers it puts
on messages. A layer pushes a header onto a message by tupling its header
with the headers of the layers above it. At the destination, the headers are
unmarshalled from the messages and passed to the layers. Each layer in
turn extracts its header from a tuple and passes the remaining headers up to
the layer above. At the application, the last header is removed and all that
remains is the message body, which is passed to the application.

This still leaves the question of how the header object is linearized into
a sequence of bytes at the bottom of the protocol stack so that it can be
transmitted over the network along with the payload. Ensemble uses the ML

60

/* Send a message. */

msg = horus_message_alloc(to_memory,
"TO_TOKEN_REQUEST") ;

horus_message_add(msg, 0, sizeof (*hdr),
(void **) &hdr);

hdr->type = TO_TOKEN_REQUEST;

hdr->flags = 0;

hdr->dest = 0;

hdr->token = htonl(group->seqno) ;

err = horus_cast(group—>below, 0, msg);

/* Receive a message. */

void handler(event *ev, horus_message *msg) {
enum to_message_type type ;
unsigned seqno ;

switch (event.type) {
case HORUS_CAST:
err = horus_message_read_byte(msg,&type) ;
if ('horus_err_ok(err))
switch (type) {
case TO_TOKEN_REQUEST:
err = horus_message_read_nlong(msg,&seqno) ;
if (thorus_err_ok(err))

break ;

Figure 4.2: Example of headers in Horus: message handling code.

61

(* total.ml Message Headers *)
type header =

| TokenRequest of int

| Token of (int * int)

| Data of int

| Unordered

(* Sending a message. *)

down (castEv name) (TokenRequest token) ;

(* Receiving a message. *)
let up_handler event msg = match (getType event), msg with
| Cast, TokenRequest token ->
(¥ Code to handle a token request *)
| Cast, Unordered ->
(¥ Code to handle a non-token ordered message *)

Figure 4.3: Example of headers in Ensemble.

62

marshaller for this purpose. A marshaller is a function that takes a concrete
data structure (embedded functions are not allowed) and linearizes it into a
sequence of bytes from which a corresponding function can reconstruct a copy
of the object. Marshallers typically transparently handle incompatibilities
in byte ordering and word size. There are numerous standard marshalling
formats such as XDR and ASN.1 [X.287]. Ensemble uses the general-purpose
marshaller in Ocaml, although it can easily support other marshallers.

By representing headers as regular ML data structures, protocols can
leverage the same powerful language features, such as pattern matching and
type checking, that are used for other data structures. This greatly simplifies
the construction of protocols and eliminates a great number of programming
errors. Not only does the programmer not have to handle complications
from low-level details such as incompatible machine byte ordering and word
sizes, but compilers can detect problems such as mismatched header types
and cases where not all header combinations are handled. Using normal ML
data structures gives the protocols a higher level of abstraction because many
implementation details are hidden.

The use of a marshaller has the potential to add significant overheads
which do not exist in an architecture where protocol headers are created
using low-level operations. The marshaller provided by Ocaml does introduce
a small but significant amount of overhead, both in the size of messages
and in processing costs. However, the optimizations presented in Chapter 3
eliminate this overhead. As with automatic garbage collection, marshalling
was useful because it let us focus on just the critical cases by automating the
rest.

Special purpose marshallers

Although Ensemble currently uses the Ocaml general-purpose marshaller,
we are experimenting with using special purpose marshallers compiled from
type information provided by the ML compiler. The normal ML marshaller
takes an arbitrary ML data structure and uses tags in the data represen-
tation to marshal it. A marshaller specialized to the actual data type of
a message can achieve a more compact representation and smaller mar-
shalling/unmarshalling times than the general purpose marshaller, but the
main benefit is that it would be better able to detect malformed messages.
This is important for security in settings where an intruder may attempt
to crash other processes by sending so-called poison-pill messages that are

63

designed to violate the typing expectations of the protocols and cause run
time type errors (which usually crash the process).

4.4.2 Message Payloads

Whereas protocol headers provide many opportunities to make use of features
of ML, the application payload portion of messages raises a series of issues.
This is largely because the nature of message payloads requires that they be
represented as low-level sequences of bytes. One normally thinks of ML as
a language best suited for manipulating high-level objects, and sequences of
bytes fall outside of the domain where many features of ML can help. For
instance, sequences of bytes in the payload often represent some high-level
object, but type checkers are usually not able to capture this structure in
useful ways. Thus, the question arises of whether ML is a good language for
doing systems development where low-level objects often occur and where
language support for them is important. Indeed, a major reason Ensemble
benefits from the use of ML is that we have succeeded in abstracting much
of the system at a high enough level that features of ML pay off. It is only
in message payloads that Ensemble confronts issues associated with low-level
objects. However, we feel that it is typical of many domains that most of the
problem can be abstracted above low-level issues.

A message payload implementation must support a variety of operations,
including allocation, release, subset (creating a new message from a subse-
quence of the bytes in another), and catenation. The subset and catena-
tion operations are needed mostly for fragmentation-reassembly and mes-
sage packing protocols. For instance, a fragmentation-reassembly protocol
needs to be able to break a large message into smaller messages that fit
the maximum message size supported by the network and reassemble it at
the destination. All these operations should be efficient for messages of sizes
ranging from 0 bytes to at least 10K bytes. They should not cause additional
allocation for the body of the message nor should they copy the contents.

Message payloads in Ensemble are represented as arrays of records called
iovecs (based on the UNIX data structure of this name). An iovec contains
a pointer to a string, an integer offset, and an integer length. The offset
specifies where the iovec’s body begins in the string and the length gives the
number of bytes of data. Both the string and the other fields of the iovec
are treated as read-only. Tovecs are exported to the rest of the system as
an opaque, abstract data type. A subset of an iovec is created by allocating

64

a new iovec record with the same string as the original but with different
offset and length. Catenation is done by catenating arrays of iovecs. Thus,
neither subset nor catenation copy the contents.

Some recent work has focused on introducing support in ML for low-level
data structures such as untagged word arrays [TMC*96]. Such support is
justified in part by the claim that it is needed in order to do real low-level
systems work in ML. While this may be true for programs that interface
directly with device drivers, Ensemble interacts with the network through
system call stubs written in C, and it has not suffered from the absence
of untagged word arrays. It would have been nice to have been able to
implement Ensemble entirely in ML without these stubs, but the addition
of less than 1000 lines of simple C code is a relatively insignificant portion
of the system. Our experience with Ensemble has shown that the string
core data type wrapped in iovecs with support from C system call stubs
is sufficient at least for the needs of communication systems development.
Of course, this not to say that untagged word arrays would not improve
performance and/or memory usage, only that they are not a prerequisite to
doing high-performance systems work.

4.5 Buffer management

Although ML strings wrapped with iovec records are sufficient for ef-
ficiently manipulating message payloads, a variety of memory management
issues arise regarding how iovec strings are allocated and managed. The
exact issues are involved with details of the Ocaml garbage collector, but
the general lesson we learned was that garbage collectors may not be the
best mechanism for managing data structures with a major impact on per-
formance, such as messages. Some garbage collection strategies can cause
unnecessary copying of data, bad fragmentation of memory, and slow recov-
ery of memory. In the end, these problems drove us to explicitly manage
message buffers, even though the rest of the system still benefits from auto-
matic memory management.

65

4.5.1 First implementation

In our initial design, Ensemble allocated a new string prior to receiving a
message from the network. This caused a variety of problems. First, because
the length of a message received from the network is not known in advance,
a string of the maximum transmission length had be allocated. For instance,
the recv() system call in the UNIX BSD socket interface must be passed
a buffer with sufficient space to contain the largest expected message size.
This size can be up to 64K bytes, but for a number of reasons Ensemble
typically uses messages of at most 10K bytes. Allocating a 10K byte block
every time a message is received wastes a great deal of memory when the
actual size turns out to be much smaller. In the case of a 100 byte message,
99% of the 10K byte space is wasted from internal fragmentation. Internal
fragmentation refers to unused memory space allocated within an object and
can result in a large waste of memory, as in our case. There are a variety of
potential solutions to this problem. One option is to copy the message out
of the buffer into a new string of the appropriate size. However, this causes
a copy for each message, and external fragmentation (unused space outside
of objects) is still a problem because the Ocaml garbage collector (as with
many non-copying collectors) does a poor job of managing large blocks of
varying sizes [WJNB95].

4.5.2 Using large message buffers

Both sorts of fragmentation are avoided in Ensemble by using very large
strings for allocating iovecs. These strings are called segments and are typ-
ically 256 K bytes long. Segments are managed by msgbufs, which consist
of a current segment and offset. Allocation from msgbufs is done by creat-
ing an iovec record with the msgbuf’s segment and offset, and the desired
length. The offset of the msgbuf is then advanced. If there is no longer
enough space left to allocate the maximum size block from the msgbuf, a
new segment is allocated and the offset is reset to zero. Allocation and re-
lease of iovecs from msgbufs are inexpensive operations. Allocation usually
consists of just advancing the msgbuf offset. Deallocation is done by the
garbage collector once for each segment when there are no more references
to a segment. The use of large segments has the potential drawback that a
segment can only be released after the release of the last message using it.
However, practice has found that this is not a problem as messages tend to

66

have similar expected lifetimes.

The problem that arises with this design is that under even moderate
loads much of the execution time (more than 25%) is used by the garbage
collector in order to recover segments. Because we do a good job of avoiding
other allocation, there is very little dead data to collect other than the (albeit
large) segments, so these collections are inefficient. On each collection, the
garbage collector scans the entire heap to collect a relatively small number
of segments. Ocaml could be configured to wait longer between garbage
collections, but this causes a lot of memory to be wasted. So we changed our
approach again.

4.5.3 Reference counted management

We decided to add explicit reference counting to buffers. Each segment has
an associated reference count that keeps track of the number of references to
the buffer. When the reference count drops to zero, the segment is returned to
a free list maintained by Ensemble. This form of reference counting is simple
to implement because the objects being managed do not contain references
to other objects. It eliminates our problems with the garbage collector be-
cause memory allocated for message payloads is rapidly recovered without
requiring a garbage collection. The Ocaml garbage collector is only triggered
by allocation on its heap, so when the apparent allocation rate decreases, the
rate of garbage collections does also.

The use of reference counting adds some programming cost because pro-
tocols must correctly update the reference counts. We found that this was
easy to do because the reference count operations are only needed when a
protocol layer releases or buffers a message, and these operations are sim-
ple to recognize. The computational overhead of maintaining the reference
counts is quite small because the compiler inlines the reference count opera-
tions at the call-site (we describe this in detail in Section 4.6). In addition,
operations for managing the segment free list are efficient because the cost
for each segment is amortized over all of the messages allocated from it.

The average time to allocate messages is graphed in Figure 4.4 for message
sizes ranging from 4 bytes to 8 K. The measurements were taken on a 200
Mhz Intel Pentium Pro processor and were made by first growing the heap to
a typical size for Ensemble and then allocating and releasing 50000 objects.
The x-axis denotes the size of messages being allocated. The y-axis denotes
the average time (in microseconds) to allocate and release one message. Note

67

that both axis have logarithmic scales. The four lines correspond to (a)
allocating 10K byte strings for every message, (b) allocating exact sized string
for each message (and copying), (c¢) msgbufs without reference counts, and
(d) msgbufs with reference counts. Option (a) is almost uniformly the worst.
For 20 byte or smaller messages, option (b) performs best. For larger sized
messages, (¢) begins to perform better than (b) because the cost of copying
starts to dominate the cost of garbage collection. (b) and (c) both climb
significantly after 256 bytes because this is the lower threshold for allocating
objects on the major heap (allocation/freeing on the Ocaml major heap is
significantly more expensive than the minor heap). Option (d), however, is
always close to the others and maintains low latencies throughout the range
of message sizes (although in this test (b) has better performance than (d)
for messages of less than 20 bytes, in the actual use in Ensemble (b) and (d)
exhibit equivalent performance for these message sizes). This is because the
garbage collector is rarely being activated.

Reference counts introduce the concern that they can cause both memory
faults and memory leaks due to programmer errors. However, these prob-
lems can be prevented in Ensemble by enabling a debugging flag that causes
reference counts for segments to be checked prior to allowing access to the
segment. This slows execution somewhat, but prevents memory errors. The
opposite problem, memory leakage, can occur if reference counts are occa-
sionally not decremented to zero, causing segments to never be released. We
addressed this problem by using weak pointers [Hay92] to detect when the
reference count object (which wraps the segment) has no further references.
When this happens, the problem is signaled to the user and the segment is
recovered to prevent a memory leak (see Figure 4.5).

Both ISIS and Horus had similar problems. Messages are no less crucial
data structures there than they are in Ensemble. The use of the system-
provided memory allocation and release operations (malloc() and free(), re-
spectively) were insufficient for managing messages, and both ISIS and Horus
ended up developing their own sub-systems for managing memory associated
with messages. These message sub-systems involved complex, multi-level,
reference-counted data structures with special-purpose free lists containing
preallocated and pre-formatted objects. The result was that message man-
agement was at least as complex as in Ensemble, and did not provide provide
as good performance, even with all the optimizations done in C.

In summary, the memory management facilities for ML turned out to be
insufficient for Ensemble and we had to add our own support to the system.

68

Comparison of Memory Management Mechanisms

T

T

usec/message

10

message size (bytes)

Figure 4.4: Comparison of the performance of management mechanisms used
for iovecs. See text for an explanation

69

String Buffer

Buffer Pool Buffer Refcount
[Live Buffers A Count = 10
4 7
/
WeakPtr O 1| Contents GO
Actual O——
- J
Free Buffers
(7
Iovec
RBuf CB
L) Offset 10232
L) Offset = 10232
Length =432 432
Protcol Layer
Figure 4.5: Depiction of the revised iovec structure. A protocol layer

is given a pointer to an iovec record. The iovec contains a pointer to a
refcount record. The refcount contains a reference count and a pointer to
the string buffer. The iovec record contains the integer offset and length of
data in the Refcount string. The buffer pool contains a weak reference to
the Refcount record and a pointer to the string buffer.

70

It is important to be careful in how one views this. One could say that this
is a failure of a garbage collected language because the garbage collector was
not powerful enough to handle everything. However, it is a characteristic of
systems style work that there are often a small set of data structures which
require very careful management to achieve high performance. This was the
case in Horus and ISIS, and it turns out that Ensemble is not any different
in this respect. Ensemble’s special management of messages highlights the
usefulness of automatic garbage collection: the garbage collector handles the
vast majority of memory management, allowing us to focus on the cases
where specialized management is required. Whereas all data structures are
explicitly managed in Horus and ISIS, in Ensemble only one is treated in this
manner.

4.6 Inlining

Communications systems and other programs with a strong systems flavor
often have multiple levels of abstraction barriers that must be crossed to
manipulate data structures, even though the abstraction barriers often hide
relatively small pieces of code. Ensemble exhibits this structure because
of its layering and extensive use of modules. The abstraction barriers are
useful because they increase modularity. The problem, of course, is that
when there are lots of abstraction barriers to be crossed in doing inexpensive
manipulations, the cost of the abstraction barriers (in the form of function
call overhead) can be larger than the cost of the manipulations themselves.

Programmers in other languages such as C are familiar with this prob-
lem. They solve it by using macros or an inlining mechanism provided by
the compiler. However, this often requires that the programmer annotate
which functions are to be inlined. Ocaml also provides inlining support that
eliminates the cost of these abstraction barriers, but without requiring anno-
tation by the programmer. Inlining involves copying the body of a function
to the sites at which the function is called, thereby eliminating the overhead
of a function call. This is done at the potential cost of causing growth in the
size of the compiled code, but we have not had any problems from the size
exploding because the Ocaml compiler has a variety of heuristics to prevent
excessive growth.

To see how all of this works, we present an operation in Ensemble, that
of releasing the contents of an Ensemble event data structure (done at least

71

twice for every message), and show how inlining eliminates the potentially
costly abstraction barriers. In addition to the call site, there are four modules
in this example. The call to the function Event.free results in turn to calls
to Iovec_array.free, Iovec.free, and Refcount.decr. Each step adds one
small part to the overall operation, such as dereferencing a record’s field and
calling another function on that field.

Through all the modules, string arguments are passed for use in debug-
ging. These function arguments are called debug and the string passed
in this example is ?FIFO”. With this debugging information, all of the
modules described here can be compiled to emit detailed traces. However,
these debugging arguments are ignored in the normal code for the modules
presented below.

(x call site *)

Event.free "FIFQ" ev

(x Event module *)

type t = {
ty : typ
origin : rank ;
ranks : rank list ;
ack : acknowledgement ;
iov : Iovec_array.t ;
extend : field list

}

(¥ Call the Iovec_array.free function on the iov
* field. Pass on the debug string unchanged.
*)
let free debug ev =

Iovec_array.free debug ev.iov

72

(x Iovec_array module *)

type t = Iovec.t array

(* Call the Iovec.free function on each entry in

* the array. Pass on the debug string unchanged.

*)
let free debug ia =
for i = 0 to (Array.length ia) - 1 do
Iovec.free debug ia. (i)
done

(x Iovec module %)

type t = {
rbuf : string Refcount.t ;
ofs : ofs ;
len : len

}

(¥ Call the Refcount.decr function on the rbuf
* field of the record.
* unchanged.

*)

let free debug i =
Refcount.decr debug i.rbuf

Pass on the debug string

73

(* Refcount module *)

type ’a t = {

mutable count : int ;

obj : ’a ;

mutable debug : (string * string) list
}

(* Decrement the reference count. This version
* ignores the debug argument.
*)
let decr debug r =
r.count <- r.count - 1

When compiled, all four levels of function calls are inlined at the caller.
This happens even though all the module interfaces export abstract data
types. Thus, the cost of crossing all of the abstraction barriers has been
eliminated by inlining across modules. The call to Event.free is inlined by
Ocaml like this:

let iova = ev.iov in
let 1o = 0 in
let len = Array.length iova in
let hi = len - 1 in
for i = 1o to hi do
let iov = iova.(i) in
let refcount = iov.rbuf in
refcount.count <- refcount.count - 1
done

Note that because of abstract module interfaces, it is not possible for a
programmer to write code that directly accesses the data structures as in
the code generated after the inlining. Also, there was no cost at run time
for passing debugging strings to the functions: the inlining exposed to the
compiler the fact that the debugging string was not being used in the modules
and so it was eliminated. This is the resulting assembly code (for the Intel
386 instruction set) that is generated for the original call to Event.free
(annotated with the corresponding ML code from above):

74

movl 16(%eax), Jecx # let iova = ev.iova
movl $1, %eax # let 1o = 0
movl -4(%ecx), %ebx # let len = Array.length iova
shrl $9, %ebx # contd.
orl $1, Yebx # contd.
addl $-2, %ebx # let hi = len - 1
.L105:
cmpl Yebx, ’eax # for-loop termination
jg .L104 # escape if done
movl -2(%ecx, %heax, 2), %edi # let iov = iova. (i)
movl Y%edx, %esi # contd.
movl (%edi), %esi # let rc = iov.rbuf
addl $-2, (Yesi) # rc.count <- rc.count - 1
addl $2, %eax #1i<-1i+1
jmp .L105

There is some room for further minor optimizations in the resulting code
(mainly restructuring to eliminate one of the branch instructions in the loop),
but the compiler has done a very good job of eliminating the abstraction
barriers from the resulting code. Achieving similarly optimized code in C
while maintaining opaque abstraction barriers would not be easy; in ML it
takes no additional work on the programmer’s part.

4.7 Conclusion

We began this chapter by asking the the question of what role can advanced
programming languages such as ML play in the design and implementation
of systems-style applications. We showed that ML allowed us to achieve
high level of abstraction in the system, and that the language support allows
system designer to focus on important parts of the system to achieve very
good performance. We described how ML aided in significantly reducing
the size of protocol layers, which are the most complex part of the system.
We also showed in detail how the Objective Caml compiler compiles efficient
code, and makes efficient use of memory.

75

Chapter 5

Formalization of layer
optimizations

This chapter describes how optimizations in Chapter 3 can be formalized in
type theory and implemented with the use of a theorem prover. This step is
important for a number of reasons. First, carrying out the optimizations in
this fashion gives strong guarantees regarding their correctness. Second, it
demonstrates a general methodology for manipulating layered systems in a
formal context. Third, we believe that formalization provides insight into the
structure of the protocols and their optimization. As an example, we show
how an actual Ensemble protocol stack is optimized using these techniques.
The major contribution of this chapter is to demonstrate how the layering
architecture from Chapter 2 and the optimizations from Chapter 3 mesh to
enable the optimizations to be carried out in a formal fashion.

For these optimizations, we use the Nuprl theorem prover [CT86, Jac94,
Kre97, Con96]. Nuprl is an interactive theorem prover with support for
automation. Proofs typically require human interaction with the theorem
prover to direct the method of proof. However, the user can apply tactics
[GMWT79, CKB84| which are programs that encode various proof techniques,
thereby automating those techniques. Nuprl’s underlying semantics are based
on a very expressive type theory. The Nuprl term language is similar to the
subset of ML we use to implement protocol layers. This makes it straight-
forward to model protocol layers in Nuprl.

The formalization is described in several steps. First, we show how to
translate imperative protocol layers into functional ones. Eliminating imper-
ative operations is important because it is easier to reason about functional

76

programs. Second, we give a functional composition operator for combining
functional layers (following the layering model). The functional composition
operator combines a stack of layers into a single layer. This step effectively
makes reasoning about stack of layers the same as for a single layer, except
that the resulting term object is larger than that for an individual layer. It
is then straightforward to import the protocol stack into a theorem prover.
Third, we show how the optimizations on protocol stacks presented in Chap-
ter 3 can be carried out in a theorem prover. Fourth, as an example we
present the application of these techniques to an actual Ensemble protocol
stack with 4 protocol layers.

The process of implementing the optimizations in Nuprl is work in progress,
and some of the description is of optimization steps that have not yet been
implemented. The work with the Nuprl theorem prover described here was
done primarily by Christoph Kreitz with help from Jason Hickey, Bob Con-
stable, and Mark Hayden. Jason Hickey is developing a new version of Nuprl,
called Nuprl-light, that addresses programming environment issues, such as
those that have arisen in this work. The parts that have been implemented
are the following: the automatic transformation of imperative layers into a
functional form, the functional layer composition operator, trace conditions
for the initial protocol stacks that are being optimized, extraction of the ini-
tial trace handler, and message compression. Clearly, there remains a good
deal of work left in the implementation of these optimizations, although we
believe there are no major technical barriers.

5.1 Functional layers

We begin by showing how to transform imperative protocol layers into purely
functional layers. This step is described in detail in [Kre97]. The transfor-
mation to functional protocol layers is important in the later optimizations
because the absence of imperative operations facilitates formal reasoning in
Nuprl. We begin with protocol layers having the structure described in Sec-
tion 2.1.8, and the resulting protocol layers use a subset of ML that is purely
functional. The layers make no use of mutable state or exceptions (other
than for aborting in the case of a protocol failure).

An imperative protocol layer has two forms of imperative operations to
be eliminated: state updates and event emission. First, each layer has a state
record containing mutable fields that are updated by the the layer handlers.

7

In the functional version, this state cannot be mutated, but layers still need
to maintain some form of state. This is done by having each handler take as
input the current state of the protocol layer and return as part of its output
a new state record. For example, if a handler needs to update a field in its
state, it creates a copy of the current state containing the modified field, and
this copy is returned from the handler.

The second form of imperative operation is more subtle. It involves the
way in which events are emitted from a layer. Recall that a handler takes as
input one event and may emit zero or more events to pass to the handlers
of the adjacent layers. In an imperative layer, event passing is implemented
through the use of imperative queues into which events are deposited by
calling a function from within the handler. However, a functional layer cannot
use such queues. The solution to this is to emit events by returning them
from the handler (along with the new state).

After eliminating the two forms of imperative operations, the layer han-
dlers become functions that are called with the current state and a single
event. When called, the handler processes the state and event and returns a
pair of the new state and a list of zero or more events to pass to the adjacent
protocol layers.

This transformation can be applied automatically on imperative layers
through the use of a simple “compiler.” This program parses the source file
of an imperative protocol layer. It then identifies the handler functions in
the layer (all the protocol layers follow a fixed structure). We modify the
handlers so that the state and list of emitted events are “threaded” through
each call. Where the imperative protocol handler would update a field in
its state, the functional handler copies the state record, leaving all the fields
the same except for the one to be updated. Where the imperative protocol
handler would emit an event by calling a function that deposits it in an
queue, the functional version adds it to the list of events to be emitted from
the function.

5.2 Functional layer composition

The next step in formalizing the optimizations involves developing a func-
tional layer composition operator that takes two functional layers as input
and returns a new layer that is their composition. The difficulty in writing
such an operator is that it needs to follow the layering model from Chapter 2,

78

which basically requires that each protocol layer only be activated with one
event at a time, and that events be passed between protocols layers in FIFO
order.

Such an operator is straightforward to implement with imperative queues.
Eliminating the imperative queues requires a moderately tricky design. Our
version makes use of queues, but functional ones. A functional queue is simi-
lar to an imperative queue, except that the operations for adding elements to
the tail and taking elements from the head both return a new queue instead
of modifying the queue in-place (as an imperative implementation does).

The use of functional queues introduces some overhead: they are not as
efficient as queues that use in-place modification. However, the optimizations
applied later eliminate all of the queue operations from event traces through
static analysis. So the overhead only appears outside the common case and
does not significantly affect the performance.

The functional composition operator works by always executing events
sequences to completion. Thus, when an event is injected into the top or
bottom of a pair of composed protocol layers, the appropriate handler is
called with the event. The events emitted from that layer are then split into
two queues. One queue is for events that are being passed between the two
layers (those that are passed up from the bottom layer and down from the
top layer), and the other queue is for events emitted from the composed layer
(down from the bottom layer and up from the top layer). The handler in the
composed layer keeps on executing events in the former queue until there are
no more left, at which point the events in the latter queue are returned.

With a composition operator, we can take any number of protocol layers
and compose them into a single layer, thereby reducing the problem of rea-
soning about a stack of protocol layers into that of reasoning about a single
(albeit large) layer. Because all of this is done functionally, it is straightfor-
ward to import the resulting layer into a theorem prover in order to carry
out the optimizations.

5.3 Trace conditions

The optimizations start with two formal terms. The first is the stack of
functional protocol layers composed using the operator just described. The
second is the trace condition, which is a predicate on an event and the state
of the protocol stack prior to injecting an event into it (see Section 3.3). The

79

transformations we carry out on the layer term to generate the optimized
layer are done with the assumption that the trace condition holds for the
initial state and the event (in the actual system, the trace condition is checked
prior to executing the optimized trace handler). In the description here, the
trace condition is assumed to have been provided by the protocol designer,
although it is conceivable that it could be generated through automated
techniques that determine the normal-case conditions that apply to messages
in a particular protocol stack. Two problems can arise if the trace condition
is incorrectly specified. If it is too weak, some optimizations can not be
made, limiting the effectiveness of the work. If the condition is too strong,
some cases do not meet the condition, preventing the use of the optimized
handler. Of course, a particular stack may have several trace conditions and
trace handlers.

5.4 The optimizations in a functional context

We now describe how the optimizations presented earlier in Chapter 3 cor-
respond to formal manipulations in a theorem prover. All the optimizations
there have analogs in the context of this method. For some, the formaliza-
tion is straightforward, while others are more challenging. The presentation
here parallels that in the earlier chapter. For each optimization, we briefly
review its purpose and then proceed by describing how it is carried out in
our formal framework. These optimizations can be viewed as a sequence of
simplifications or transformations, where on each pass we are able to prove
that a modified protocol (with fewer operations) has equivalent behavior to
the original if the trace condition is enabled.

5.4.1 Extracting the source code

The first pass extracts the relevant source code from each layer in the stack in
order to generate the initial version of the handler. After this pass, all of the
event queue operations for communicating between layers have been elimi-
nated. These manipulations appear in the formalization through sequence
of reductions on the code. For instance, when we are reasoning about the
handler for particular layer, there may be different cases in the handler for
the different types of events. Typically, the trace condition specifies the type
of the event being injected. Using this information we can perform dead-

30

code elimination on the handler to eliminate the dispatching operation on
the event type and the cases for the other event types. By repeating these
sorts of reductions, we can progressively eliminate code outside of the event
trace until all that is left is the relevant code for the handler.

Note that in the description of the optimizations, we referred to the use of
ad-hoc annotations in the protocol layers that allow the optimized handlers
to be extracted from the constituent layers. In general, these annotations
are required. However, annotations are not needed when we use a theorem
prover. The trace condition replaces them: we can use the theorem prover
to reason about which portion of each layer occurs in the optimized trace
handler without the use of annotations. This is a benefit of our approach.

5.4.2 Intermediate data structures

This pass eliminates intermediate data structures, such as event records,
that are allocated and used within a single call to a handler. By eliminating
these data structures and shifting their contents to local variables, we can
prevent unnecessary memory allocation and improve the time to access the
information (local variables can be more easily assigned to registers where
access times are much faster than data structures in memory).

In the formalization, this simply involves “flattening” data structures that
are allocated in the trace handler but do not escape. For instance, assume
that at one point in the handler a pair is allocated and later one of the
elements is accessed:

let e = (a,b) in

let (c,d) = e in
if d then ...

The allocation of the pair can be eliminated and the contents can be
substituted throughout the rest of the term, arriving at the following code:

| if b then ... |

81

5.4.3 Inlining of functions

Because the trace handlers are relatively small and have a significant impact
on the performance of the system, they are good candidates for inlining.
With functional languages, inlining is a straightforward operation. It is done
by substituting the definition of a function for one of its references, and then
carrying out beta-reduction.

5.4.4 Traditional optimizations

Traditional optimizations are carried out by the Ocaml compiler after the
code from the theorem prover is emitted.

5.4.5 Delayed processing

Another optimization involves splitting the trace handler operations into
those that must be done before delivering a message to the application or
transmitting it on the network, and those that can be done after. In this for-
malization, this optimization is simple because these two sets of operations
are clearly divided by the return value of the handler. For instance, after
optimization, the handler for a stack with two protocols has this form:

let handler (s1,s2) ev msg =
((updatel(sl,ev,msg) ,update2(s2,ev,msg)) ,emit(sl,s2,ev,msg))

The state of the stack is a pair, and updatel, update2, and emit
correspond to the optimized terms for updating the state of the first protocol
layer, the update for the second layer, and the function for calculating the
events and messages to emit.

Delayed operations are moved outside the fast path by dividing the han-
dler into two functions, emit and update. The emit function is computed
and the resulting messages are emitted before the update function.

5.4.6 Compressing protocol headers

The final optimization involves compressing headers in normal case mes-
sages. This optimization both improves computational performance (smaller
messages are often faster to manipulate) and the utilization of the network

82

(a smaller portion of messages on the network consists of headers). First,
the programmer identifies the common message formats and generates an
optimized message data type where the common messages have a compact
form. Second, the protocol stack is wrapped with conversion functions that
translate between the optimized and unoptimized messages (messages being
sent on the network are compressed into the optimized form and messages
received from the network are expanded back into normal form). Third, the
resulting stack is manipulated to eliminate the compression and expansion
operations in the normal cases.

The first step, identifying the common message formats, is straightfor-
ward. The common messages are the ones that appear in the emit portion
of the trace handler. For instance, one of the messages emitted may be:

Push (Hdr1(seqno) ,Hdr2)

What we want to do is eliminate the constant content and just send the
non-constant portion (in this case, the integer seqno). Determining which
parts of the message is constant and is currently done by the programmer,
but could probably be automated for most cases. This can be formalized
through a kind of representation analysis on the messages. We take the type
of messages as they are emitted onto the network and wrap this type in
another type. For instance, if the type of the messages is msg, then this
wrapper type, msg_opt, would take this form:

type msg_opt =

| Normal of msg
| OptO0 of seqgno
| Optl of

| Optn of ...

The msg_opt type can represent an arbitrary message by wrapping it as
Normal(msg). However, there are now message formats that contain just
the information needed in the common cases. For instance the Opt0(seqno)
would correspond to Push(Hdr1(seqno),Hdr2) (the seqno type is an alias
for the core type for integers, int). Note that the msg_opt type corresponds
to a particular protocol stack and way in which it is being optimized.

83

The new message type can be used with the original protocol stack by
wrapping the stack with functions that compress the normal messages cases
and expand the optimized ones. A handler function, called handler, is
wrapped as follows:

let handler_opt states ev msg =
(* Expand the input message from optimized to normal.
*)

let msg = expand msg in

(* Run normal handler on the event and message.
*)

let (states,events) = handler states ev msg in

(* Compress the output messages from normal to optimized
*)
let events =
map (fun (ev,msg) ->
(ev, (compress msg))
) events
in

(* Return new states and compressed messages.
*)

(states,events)

When an optimized message is received by this handler, it first expands
it into a normal message. Then the unoptimized handler is executed on
the event and message and it returns a list of events and messages to be
emitted. It then scans through these (the map iterator takes the list of
events and applies the given function to each item in the list to create a
new list). For each message emitted, the compress function is called, which
pattern matches for the optimized cases and, when it finds them, returns the
optimized form of the message. If it does not find a match, the message is
wrapped as Normal(msg).

All the optimized message formats are now compressed before transmis-
sion on the network. However, when transmitting messages, the optimized
handlers still are checking each of their emitted messages to see if they match

84

the normal cases. Also, on receipt, the optimized messages are expanded un-
necessarily. Both these operations can be eliminated by further transforming
the optimized handlers so that the compression and expansion operations are
moved to where the messages are actually being constructed or accessed and
then eliminating the construction and compression operation. For instance,
after the transformation, we may have this code segment:

(* Construct the message.
*)
let msg = Push(Hdri(seqno) ,Hdr2) in

(* Compress the message.
*)
let msg_opt = match msg with
(* Match for case 0.
*)
| Push(Hdrl(seqno) ,Hdr2) -> OptO seqno

(x Match for other cases.

*)

(¥ If all else fails, then wrap with Normal.
%)

| msg -> Normal(msg)

in

(* Return the event and optimized message.
*)
[(ev,msg_opt)]

We can statically reason that the message being constructed is always
going to match the first pattern, and therefore reduce accordingly:

85

(x Construct the message directly.
*)
let msg_opt = OptO seqno in

(* Return the event and optimized message.
*)
[(ev,msg_opt)]

Through this static analysis, we have eliminated the operations for con-
structing the full message and the comparisons for detecting the optimized
cases. An analogous transformation can be used at the receiver to leave the
message in the optimized format in the call to the handler, thereby yielding
similar improvements.

5.5 Reintroducing imperative operations

While a functional protocol stack is easier to manipulate formally, the func-
tional implementation is likely to have worse performance than a correspond-
ing imperative implementation. In particular, state updates with imperative
operations are usually more efficient than the functional equivalent because
they can be done in-place. It may therefore be advantageous to transform
the trace handlers back into an imperative representation after completing
the optimizations.

While we have not worked out the details of this reverse transformation,
the general idea is straightforward. We take the functional representation
of the new state returned by the handler and use it as a prescription for
corresponding imperative updates to the imperative layer state.

5.6 Optimization of an actual protocol stack

To make the above presentation concrete, we present the transformation of an
actual Ensemble protocol stack following this methodology. The optimized
protocol stack we present is the default Ensemble protocol stack, without
flow control protocols. We plan to add these protocols in the near future,
however even without them the stack provides sufficient functionality for
many applications.

86

The stack we optimize here includes four protocol layers. Our optimiza-
tion approach involves composing these layers into a single layer and then
optimizing the important event traces for that stack. However, in practice
the “stack” we optimize is really a sub-stack of the stacks that are used in
practice. Only the layers below the application representative layer affect
the normal performance of the stack, so it is sufficient to optimize just these
and use unoptimized layers for everything above the application. In a sense,
we are optimizing a wide range of protocol stacks because there are a large
number (more than 1000) combinations of existing layers in Ensemble that
can be usefully added above the application.

The four layers being optimized are (starting closest to the application)
Frag, Pt2pt, Mnak, and Bottom. We briefly describe these along with the
common cases that we optimize for them.

e The Frag layer implements fragmentation and reassembly for messages
that are larger than the maximum size transmitted on the network.
For this layer, we optimize the case where the message is small enough
that fragmentation is not required. In this case, the layer adds a trivial
header and passes the message directly through.

e The Pt2pt layer implements reliable point-to-point message transmis-
sion. The protocol (which is similar to the retransmission protocol for
TCP) adds a sequence number to each message’s header and buffers a
copy until it is acknowledged by the destination. If an acknowledge-
ment is not received after a certain amount of time (this timeout is
a parameter of the protocol), the protocol layer begins retransmitting
the message at regular intervals. However, the normal behavior is for
the initial transmission to be successful and for messages to arrive in
order. This is the case that we optimize. In addition, we optimize the
treatment of multicast messages which pass untouched directly through
this layer.

e The Mnak layer implements reliable multicast message transmission.
In a similar fashion to the Pt2pt protocol, this protocol adds sequence
numbers to all messages and buffers them until they are acknowledged.
However, retransmission is carried out through NAKs, where each desti-
nation explicitly requests retransmissions when it detects missing mes-
sages. Again, the normal case is for the network to behave reliably and
deliver multicast messages in the order they were sent. In addition, this

87

layer ignores point-to-point messages, which are handled by the Pt2pt
layer.

e The Bottom layer serves a number of special purposes in Ensemble.
However its behavior in the normal case is quite simple. It keeps track
of which endpoints in the group have been marked as failed by the
membership protocols and drops messages that arrive from those end-
points after they have “failed”!. This is important because it provides
the illusion to the rest of the stack that failed endpoints have really
failed (they are not heard from again), and considerably simplifies other
protocols. Thus, this layer only puts trivial headers on multicast and
point-to-point messages and the only operation it does in the normal
case is on receipt to check if the origin of a message has failed. The
case that is optimized is that the origin has not failed.

For this protocol stack, there are four event traces to be optimized (send
and receive for both point-to-point and multicast messages). However, in
the discussion that follows, we focus on only one case, the receipt of a mul-
ticast message. We first show for two of the layers (Bottom and Mnak) the
trace condition and resulting optimized trace handler that are used for this
event trace. We present a theorem that governs how layers are composed
under certain kinds of traces. We then present the resulting trace handler
that we extracted from the four layer protocol stack for this condition (repre-
sented as a Nuprl theorem). Finally, we show the application of the message
compression optimization to this handler.

5.6.1 Independent optimization of layers

The first step in carrying out the optimization is individually to prove the-
orems for the behavior of the layers under the trace condition. We later
assemble the individual theorems and use them to establish further theorems
about the composition of the layers. This bottom-up, divide-and-conquer ap-
proach allows the problem to be sub-divided, which substantially improves
the performance of the theorem prover.

All of the Ensemble protocols are divided into separate handlers for up
and down events and each of these handlers typically do an immediate case

!The process may not have actually failed, but may merely be unrespon-
sive or unreachable via the network.

88

match getType ev, hdr with

(* For normal Cast and Send messages, just check
* that the origin has not failed.
*)
| (ECast|ESend), NoHdr ->
if not s.failed.(getPeer ev) then
(x Common case: origin was alive.
*)
up ev abv
else
free name ev

Figure 5.1: Portion of handler for normal case messages in the Bottom layer.

split on the type of the event and the header of the message. For the Mnak
and Bottom layers, the relevant portions for the event traces that we are
concerned with are in Figures 5.1 and 5.2.

The purpose of this first step is to extract the code from these arms of
the case split that apply in the event trace we are optimizing. To do this, we
determine the trace condition to use for the event trace. In this event trace,
the event type is expected to be Cast (a multicast event), the header for
Bottom is NoHdr (“no header”), and the header for Mnak is Data(seqno)
(where seqno is the sequence number of the message).

Each of the layers adds an additional condition, as described in the pro-
tocol descriptions above. For Bottom, the condition is that the origin of the
message is not considered to be failed. The origin of the message is in the
peer field of the event, and this condition is checked by examining the cor-
responding array entry of the failed field of the Bottom layer’s state. With
this condition enabled, we can then prove that a simpler handler suffices for
this layer.

89

match getType ev, hdr with

(* ECast:Data: Got a data message from other
* member. Check for fast path or call recv_cast.
*)
| ECast, Data(seqno) ->
let origin = getPeer ev in
let buf = s.buf.(origin) in
let iov = getlIov ev in

(* Check for fast-path.

*)

if Iq.opt_insert_check buf seqno then (
(* Fast-path.
*)
s.buf. (origin) <- Iq.opt_insert_doread buf seqno iov aby ;
up ev abv

) else (
recv_cast origin seqno abv (getIov ev) ;
free name ev

Figure 5.2: Portion of handler for normal case messages in the Mnak layer.

90

Vvs:View.state.
Vhdlr:Layer.handler.
Vs:Bottom.state.
Vev:Event.t.
Vhdr :Bottom.header.
Vmsg:Message . TYPES.
Vpeer:Trans.rank.
hdlr = snd (convert Bottom.l vs)
=
getPeer ev = peer
N getType ev = Cast
A hdr = NoHdr
A s.failed. (peer) = false
=
hdlr (s, UpM(ev, Full(hdr, msg)))
= (s, [=>UpM(ev, msg)<=])

Figure 5.3: Optimization theorem for the Bottom layer.

91

The corresponding theorem appears in Figure 5.3%2. The first portion of
the theorem is a series of universal quantifiers that specify the types over
which the variables later in the theorem range. For instance, the variable
s ranges over the type Bottom.state, the type of the state records for the
Bottom layer. Next come two sets of assumptions. The first set of assump-
tions describe how the protocol layer has been initialized. In this case, there
is one assumption: that the handler was generated by applying the convert
function to Bottom.l (the implementation of the Bottom layer) and a view
state, vs. The reasons for the initialization being done in this fashion are be-
yond the scope of this description. Suffice it to say that the resulting handler
is bound to the hdlr variable and is a function that takes a pair of a state
record and an event and returns pair of a new state and queue of events. The
next set of assumptions are the trace condition for this layer. For instance,
in this case the “type” of the event is Cast:

getType ev = Cast

The last part of the theorem is a statement about the behavior of the
handler under both of the above sets of assumptions. In this case, the state
is returned unmodified and the event and message are passed up (after the
header for this layer has been removed). The syntax, [=> x <=|, represents
a functional queue with a single item in it (this is analogous to the notation
commonly used for instantiating lists, [x]). The theorem can be summarized
as follows: if certain conditions hold on the state of the Bottom layer and
an event and message to be injected into it (together, these form the trace
condition), then the normal execution of the layer is equivalent to a simplified
handler that does not update the state, and returns just the event that was
injected into the layer (this handler is the trace handler).

We give the corresponding theorem for the Mnak layer in Figure 5.4. The
condition for Mnak is that the sequence number in the header should be the
next expected sequence number from the endpoint. This is checked by calling

2As the point of this description is to demonstrate an application of the
methodology and not provide a tutorial for Nuprl, the theorems presented
here have been modified from those generated using Nuprl. The changes
include additional formatting, renaming of variables, elimination of some ex-
traneous information (such as some of the type information), and elimination
of some details of Ensemble that would otherwise obscure the presentation.

92

Vvs:View.state.
Vhdlr:Layer.handler.
Vs:Mnak.state.
Vev:Event.t.
Vhdr :Mnak.header.
Vmsg:Message . TYPES.
Vseqno:Trans.seqno.
Vpeer:Trans.rank.
hdlr = snd (convert Mnak.l vs)
=
getPeer ev = peer
N\ getType ev = Cast
A hdr = Data(seqno)
N Iq.opt_insert_check s.buf.(peer) segno = true
=

hdlr (s, UpM(ev, Full(hdr, msg)))
= ((s[.buf<—s.buf[. (peer) <+
Ig.opt_insert_doread s.buf.(peer)
seqno
(getIov ev)
msgll),
[=>UpM(ev, msg)<=])

Figure 5.4: Optimization theorem for the Mnak layer.

93

VTopHdlrs,BotHd1lrs,CpsHdlrs,TopState,BotState: TYPES.
VTop:View.state -> TopState * TopHdlrs.
VBot:View.state -> BotState * BotHdlrs.
Vvs:View.state.
Vev:Event.t.
Vtop_hdlr:TopHdlrs.
Vbot_hdlr:BotHdlrs.
Vcps_hdlr:CpsHdlrs.
Vev:Event.t.
VmsgO,msgl,msg2:Message.TYPES.
Vsl1,sla:TopState.
Vs2,s2a:BotState.

top_hdlr = snd (Top vs)

A bot_hdlr = snd (Bot vs)
A cps_hdlr = snd (compose Top Bot vs)
=

top_hdlr (s1, UpM(ev, msgl)) = (sla, [=>UpM(ev,msg2)<=])
A bot_hdlr (s2, UpM(ev, msg0)) = (s2a, [=>UpM(ev,msgl)<=])
=

(cps_hdlr ((s1, s2), UpM(ev, msg0O))
= ((sla, s2a), [=>UpM(ev, msg2)<=]))

Figure 5.5: The upward linear layer composition theorem.

the Iq.opt_insert_check function on the message buffer corresponding to
the origin of the message (the Iq module implements “infinite queues,” the
abstraction we use for managing message buffers). The handler is similar to
that of Bottom in that the event is then emitted unmodified. However, the
state is updated by adding the message into the buffer.

5.6.2 Composing the handlers

With the above theorems for the individual layers in hand, the next step
is to prove the corresponding theorem for the stack. Before we move on to

94

this, we first introduce a theorem called the upward linear layer composition
theorem (ULLC). ULLC simplifies the composition of the trace conditions
and handlers of the individual layers. It states that when two layers pass an
event directly up, their composition also passes that event directly up. An
analogous theorem exists for the downward case. ULLC is used as a building
block for constructing trace conditions and handlers for linear event traces.
We envision constructing a library of such theorems to form an “algebra” of
protocol layers and optimizations. The theorem appears in Figure 5.5.

With the layer composition theorem, we can now compose the conditions
and handlers for the event trace we are using as an example. This appears in
Figure 5.6. The theorem is different from the theorems for the Bottom and
Mnak layers only in that the “layer” being reasoned about is the composition
of four layers. Otherwise, it is similar in that it states that if certain condi-
tions hold on the state of the layer (here the state is really the states of the
four constituent layers), then the normal execution of the layer is equivalent
to a simplified handler. Note that the intermediate event queue operations
introduced by the compose function have been entirely eliminated, leaving
only the creation of a singleton event queue.

5.6.3 Message compression

After extracting the trace condition, there are a number of further opti-
mizations to apply to the protocol layer. An important one that we present
here is the message compression optimization. This follows directly along
the lines described above in Section 5.6.3. The result of the optimization is
a transformed protocol stack that uses an alternate message format that is
more efficient for the common cases. The corresponding theorem appears in
Figure 5.7. Note that where the full-sized message Full(NoHdr,Full(...))
appeared in Figure 5.6, these have been replaced with the optimized form,
Opt0(seqno,msg).

5.7 Automation
People often have misconceptions regarding the degree of automation in the-
orem provers such as Nuprl. While very simple proofs can sometimes be

tackled automatically by Nuprl, proofs in general require human guidance.
For instance, the optimizations in this chapter required a significant amount

95

Vvs:View.state.
Vhdlr:Layer.handler.
Vs_frag:Frag.state.Vs_pt2pt:Pt2pt.state.
Vs_mnak:Mnak.state.Vs_bottom:Bottom.state.
Vev:Event.t.Vpeer:Trans.rank.
Vmsg:Message . TYPES.Vseqno:Trans.seqno.
hdlr = snd
((compose (convert Frag.l) (compose (convert Pt2pt.1)
(compose (convert Mnak.l) (convert Bottom.l1l)))) vs)

=
getPeer ev = peer
getType ev = Cast € Event.typ

A Iq.opt_insert_check s_mnak.buf.(peer) seqgno = true
A s_bottom.failed.(peer) = false
=
hdlr ((s_frag,s_pt2pt,s_mnak,s_bottom),
UpM(ev,
Full (Bottom.NoHdr,
Full(Mnak.Data(seqno),
Full(Pt2pt.NoHdr,
Full (Frag.NoHdr,msg))))))
= ((s_frag
, S_pt2pt
, s_mnak[.buf<—s_mnak.buf[. (peer)
<Iq.opt_insert_doread s_mnak.buf.(peer)
seqno
(getIov ev)
Full(Pt2pt.NoHdr, Full(Frag.NoHdr, msg))]]
, s_bottom)
, [=>UpM(ev, msg)<=])

Figure 5.6: The optimized stack theorem.

96

Vvs:View.state.
Vhdlr:Layer.handler.
Vs_frag:Frag.state.Vs_pt2pt:Pt2pt.state.
Vs_mnak:Mnak.state.Vs_bottom:Bottom.state.
Vev:Event.t.Vpeer:Trans.rank.
Vmsg:Message . TYPES.Vseqno:Trans.seqno.
hdlr = snd
((compose (convert Frag.l) (compose (convert Pt2pt.1)
(compose (convert Mnak.l) (convert Bottom.1l)))) vs)
=
getPeer ev = peer
N getType ev = Cast
A Iq.opt_insert_check s_mnak.buf.(peer) seqno = true
A s_bottom.failed. (peer) = false
=
Comp.handler_opt hdlr
((s_frag,s_pt2pt,s_mnak,s_bottom),
UpM(ev,Optl(seqgno,msg)))
= ((s_frag
, S_pt2pt
, s_mnak[.buf<—s_mnak.buf[. (peer)
<Iq.opt_insert_doread s_mnak.buf.(peer)
seqno
(getIov ev)
Full(Pt2pt.NoHdr, Full(Frag.NoHdr, msg))]]
, s_bottom)
, [=>UpM(ev, msg)<=1)

Figure 5.7: The optimized stack theorem with message compression.

97

of human interaction. However, proof tactics that encode various strategies
can decrease the amount of interaction as tactic “libraries” are developed
and refined. One area for future work is the further development of these
tactics to automate the optimizations.

The ultimate goal of complete automation involves support that would
allow developers of a new protocol stack to have an optimizer automatically
detect trace conditions, extract trace handlers, determine the optimized mes-
sage representation, Some stacks would undoubtedly still require human
interaction at various steps, but the hope would be that an optimizer could
capture most protocol stacks without this interaction.

Totally automated optimization is still a long way off. Currently, these
portions of the optimization process have been automated to a large degree:
importing protocol layers into Nuprl, extraction of trace handlers from indi-
vidual layers (given the trace condition), and application of the ULLC theo-
rem to compose trace handlers together. The rest of the optimizations either
require a good deal of human interaction or still have not been implemented
in the context of Nuprl.

A question raised by this work is whether or not the optimization frame-
work will eventually be subsumed by optimizations implemented in standard
compilers. We believe this will not happen because many of the reasoning
steps involved in the optimizations are quite complex and specific to the prob-
lem domain. While we believe most or all of the steps could be automated for
most protocol stacks, this will require a large degree of domain-specific knowl-
edge about protocol optimization. Indeed, the optimizations are generated
through tactic programs that encode complex proof techniques. It is unlikely
that compilers would be able to replicate these kinds of manipulations with-
out also requiring the protocol designer to “program” the optimizations, at
which point the compiler would begin to appear very much like a theorem
prover.

5.8 Conclusion

This chapter demonstrated how the protocol layer optimizations can be im-
plemented using a theorem prover. We began by introducing the Nuprl
theorem prover and providing a brief background. Then we showed how im-
perative protocol layers can be transformed into a functional representation
and we gave a composition operator for such layers. We then described how

98

each of the optimizations from Chapter 3 can be made on the functional
layers through the use of a theorem prover. Finally, we presented an actual
Ensemble protocol stack and demonstrated several of the optimizations on
it as a proof of concept.

99

Chapter 6

Conclusion

This thesis has addressed issues in building communication systems with
very high levels of performance and flexibility. We began by presenting the
Ensemble architecture, describing the components, their interactions, and
how this architecture compares with other communication systems.

We then examined the performance problems that arise in highly layered
communication systems. We showed where these performance inefficiencies
arose and showed how to structure the system in order to eliminate these
inefficiencies through a sequence of high level optimizations.

We examined how advanced programming languages such as ML can aid
in the design and implementation of such systems. We showed how ML
helped in reducing the size of the protocol layers and in exposing structure
of the system that allowed for further decomposing the layers and improving
the performance. We showed that ML allowed us to achieve high level of ab-
straction in the system, and that the language support allows system designer
to focus on important parts of the system have very good performance.

In the final chapter, we continued the development of the protocol op-
timizations, showing how to formalize them and implement them using a
theorem prover.

Looking ahead, there are many directions to pursue. The formal struc-
ture constructed for carrying out the protocol optimizations in Nuprl was de-
signed to support protocol verification as a next step. The advantage of our
approach is that the use of ML in the protocol layers means that verification
is done on the actual, executable protocol layers instead of just specifications
or abstracted versions of the executable protocols, as is commonly done.

One question that remains to be answered is whether the protocol op-

100

timizations in Chapter 5 can be automated to the degree that they can be
used by protocol designers who themselves do not have much experience with
theorem provers. Bringing the optimization technology to this level would
have repercussions in the areas of distributed systems and theorem proving.
Protocol designers would be given a powerful tool for further developing ex-
tremely flexible protocol suites without having to pay a price in performance.
Theorem proving researchers would be given an active set of users applying
their tools to real world problems on a daily basis. Whether or not this goal
can be achieved remains to be seen, however.

One problem in automating the optimizations involves automatically de-
termining the trace conditions for a protocol stack. An interesting solution
to this would be to use profiling data to determine the common execution
traces for a protocol stack and from this information derive the trace condi-
tions. One can imagine using this approach to adaptively optimize protocol
stacks in which the trace handlers that are important to optimize depend on
the behavior of the application. The idea is to profile protocol stacks running
under an application and regularly generate new trace conditions based on
recent profiling data. When the set of trace conditions changes, the optimizer
could be executed in the background to generate optimized trace handlers
for the new trace conditions. When the new handlers are ready, they can be
dynamically linked to the running process and the protocol stack can switch
to them®. Thus the optimized protocol stack would be regularly adapting to
the application workload.

As described in Chapter 4 the use of ML in Ensemble raises a number of
issues regarding the usefulness of advanced programming languages such as
ML in systems style settings. Experience gained with Ensemble has helped
us to understand many of these issues, and this experience has been fed back
into the Ocaml compiler, resulting in improvements in garbage collection,
marshalling facility, interoperability with C, Other programming lan-
guage projects are now using Ensemble as a example systems style application
for use in programming language experiments. We hope that Ensemble will
continue to serve as a vehicle for breaking down barriers to using ML in
systems style projects.

! As mentioned in Chapter 2, Ensemble supports both dynamic linking of
new protocols and switching protocol stacks on-the-fly.

101

BIBLIOGRAPHY

[AWWV6]

[Bas97]

[BBVVE95]

[BHLM94]

[BJ87]

[BvR94|

[C*86]

[CHTCB95]

J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Con-
current Programming in Erlang. Prentice Hall, 1996.

Anindya Basu. A Language-based Approach to Protocol Con-
struction. PhD thesis, Cornell University, Cornell University,
August 1997.

Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von
Eicken. U-Net: A user-level network interface for parallel and
distributed computing. In Proc. of the Fifteenth ACM Symp. on
Operating Systems Principles, pages 40-53, Copper Mountain
Resort, CO, December 1995.

Edoardo Biagioni, Robert Harper, Peter Lee, and Brian G.
Milnes. Signatures for a network protocol stack: A systems ap-
plication for Standard ML. In Proc. of the ACM Conf. on Lisp
and Functional Programming, Orlando, Florida, June 1994.

Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proc. of the Eleventh ACM
Symp. on Operating Systems Principles, pages 123—138, Austin,
TX, November 1987.

Kenneth P. Birman and Robbert van Renesse. Reliable Dis-
tributed Computing with the Isis Toolkit. TEEE Computer So-
ciety Press, Los Alamitos, CA, 1994.

Robert L. Constable et al. Implementing Mathematics in the
NuPRL Proof Development System. Prentice-Hall, 1986.

Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and
Bernadette Charron-Bost. On the impossibility of group mem-

102

[CIRS8Y]

[CKB84]

[Con96|

[CT90]

[CZ85]

[FLS97]

[GMWT9]

[Har96]

[Hau94]

bership. Technical Report TR95-1548, Cornell University, Oc-
tober 1995.

David Clark, Van Jacobson, John Romkey, and Howard Salwen.
An analysis of TCP processing overhead. IEEE Communica-
tions Magazine, pages 23-29, June 1989.

Robert L. Constable, T. Knoblock, and J. L. Bates. Writing pro-
grams that construct proofs. J. Automated Reasoning, 1(3):285—
326, 1984.

Robert L. Constable. The Structure of Nuprl’s Type Theory
in Logic and Computation. NATO ASI Series. Springer Verlag,
1996.

David D. Clark and David L. Tennenhouse. Architectural con-
siderations for a new generation of protocols. In Proc. of the
1990 ACM Symp. on Communications Architectures & Proto-
cols, pages 200-208, September 1990.

David Cheriton and Willy Zwaenepoel. Distributed process
groups in the V kernel. ACM Transactions on Computer Sys-
tems, 3(2):77-107, May 1985.

Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying
and using a partitionable group communication service. In Proc.
of the Sizteenth ACM Symp. on Principles of Distributed Com-
puting, pages 53-62, Santa Barbara, CA, August 1997.

Michael Gordon, Robin Milner, and Christoph Wadsworth. Fd-
inburgh LCF: a mechanized logic of computation, volume 73 of
Lecture Notes on Computer Science. Springer-Verlag, 1979.

The Harlequin Group, Cambridge. The MLWorks User Guide,
November 1996.

Bogumil Hausman. Turbo Erlang: Approaching the speed of C.
In Evan Tick and Giancarlo Succi, editors, Implementations of
Logic Programming Systems, pages 119-135. Kluwer Academic
Publishers, 1994.

103

[Hay92]

[Jac90]

[Jac94]

[Kar97]

[Kay95]

[Kre97]

[Kru93]

[Ler97]

[Mac93]

[Maf95]

Barry Hayes. Finalization in the garbage collector interface. In
Yves Bekkers and Jacques Cohen, editors, International Work-
shop on Memory Management, volume 637, pages 277—298.
Springer Verlag LNCS, St. Malo, France, September 1992.

Van Jacobson. Compressing TCP/IP headers for low-speed se-
rial links. RFC 1144, Network Working Group, February 1990.

Paul B. Jackson. The Nuprl Proof Development System, Version
4.1 Reference and User’s Guide. Cornell University, Ithaca, NY,
February 1994.

David A. Karr. Specification, Composition, and Automated Ver-
ification of Layered Communication Protocols. PhD thesis, Cor-
nell University, Cornell University, March 1997.

Jonathan Kay. Path IDS: A Mechanism for Reducing Network
Software Latency. PhD thesis, University of California, San
Diego, 1995.

Christoph Kreitz. Formal reasoning about communication sys-
tems I: Embedding ML into type theory. Technical Report
TR97-1637, Cornell University, July 1997.

Clifford Dale Krumvieda. Distributed ML: Abstractions for Ef-
ficient and Fault-Tolerant Programming. PhD thesis, Cornell
University, Cornell University, August 1993.

Xavier Leroy. The Objective Caml system release 1.05. INRIA,
France, May 1997.

David MacQueen. Reflections on Standard ML. In Peter E.
Lauer, editor, Functional Programming, Concurrency, Simu-

lation and Automated Reasoning, volume 693, pages 32-46.
Springer Verlag LNCS, 1993.

Silvano Maffeis. Adding group communication and fault-
tolerance to CORBA. In Proc. of the 1995 USENIX Con-
ference on Object-Oriented Technologies, Monterey, CA, June
1995. USENIX.

104

[MOR+96]

[MP96]

[MPBOYS6]

[PHOA93]

[Pos81]

[Rep91]

[Rit84]

[TMC+96]

Keith Marzullo, Michael Ogg, Aleta Ricciardi, Alessandro
Amoroso, F. Andrew Calkins, and Eric Rothfus. NILE: Wide-
area computing for high energy physics. In Proc. of the of the 7th
European SIGOPS Workshop, Connemara, Ireland, September
1996.

David Mosberger and Larry Peterson. Making paths explicit in
the Scout operating system. In Proc. of the of the 1996Symp. on
Operating Systems Design and Implementation, pages 153-168,
Seattle, Washington, October 1996.

David Mosberger, Larry L. Peterson, Patrick G. Bridges, and
Sean O’Malley. Analysis of techniques to improve protocol pro-
cessing latency. In Proc. of the 1996 ACM Symp. on Com-
munications Architectures € Protocols, pages 73-84, Stanford,
September 1996.

Larry L. Peterson, Norm Hutchinson, Sean O’Malley, and Mark
Abbott. RPC in the x-Kernel: Evaluating new design tech-
niques. In Proc. of the Fourteenth ACM Symp. on Operat-
ing Systems Principles, pages 91-101, Asheville, NC, December
1993.

Jon Postel. Transmission Control Protocol. RFC 793, Septem-
ber 1981.

John H. Reppy. CML: A higher-order concurrent language. In
Proc. of the ACM SIGPLANN ’91 Conference on Programming
Language Design and Implementation, pages 293-305, June
1991.

Dennis M. Ritchie. A stream input-output system. Bell Labo-
ratories Technical Journal, 63(8):1897-1910, 1984.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
Proc. of the 1996 SIGPLAN Conference on Programming Lan-
gquage Design and Implementation, 1996.

105

[TVEBO95|

[VRI6]

[VRBMY6]

[WINBY3]

[WLO3]

[X.287]

Anindya Basu Thorsten Von Eicken, Veena Avula and Vineet
Buch. Low-latency communication over atm networks using ac-
tive messages. Technical Report TR94-1456, Cornell University,
March 1995.

Robbert van Renesse. Masking the overhead of protocol lay-
ering. In Proc. of the 1996 ACM Symp. on Communications
Architectures & Protocols, Stanford, September 1996.

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis.
Horus: A flexible group communication system. Communica-
tions of the ACM, 39(4):76-83, April 1996.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles. Dynamic storage allocation: A survey and critical re-
view. In Proc. of the International Workshop on Memory Man-
agement, Kinross, Scotland, UK, September 1995.

Pierre Weis and Xavier Leroy. Le Language Caml. InterEditions,
Paris, 1993.

CCITT Recommendation X.208. Specification of Abstract Syn-
tax Notation One (ASN.1), 1987.

106

