Nuprl Lemma : eu-between-eq-exchange3

`∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (b_c_d) supposing (a_c_d and a_b_c)`

Proof

Definitions occuring in Statement :  euclidean-plane: `EuclideanPlane` eu-between-eq: `a_b_c` eu-point: `Point` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]`
Definitions unfolded in proof :  all: `∀x:A. B[x]` uall: `∀[x:A]. B[x]` uimplies: `b supposing a` member: `t ∈ T` prop: `ℙ` euclidean-plane: `EuclideanPlane`
Lemmas referenced :  eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (b\_c\_d)  supposing  (a\_c\_d  and  a\_b\_c)

Date html generated: 2016_05_18-AM-06_34_40
Last ObjectModification: 2015_12_28-AM-09_27_24

Theory : euclidean!geometry

Home Index