Nuprl Lemma : eu-congruence-identity2

[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (a b ∈ Point) supposing (ab=cd and (c d ∈ Point))


Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  eu-congruent_wf eu-congruence-identity equal_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis equalitySymmetry thin hyp_replacement Error :applyLambdaEquality,  extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesisEquality sqequalRule independent_isectElimination isect_memberEquality axiomEquality equalityTransitivity

\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (a  =  b)  supposing  (ab=cd  and  (c  =  d))

Date html generated: 2016_10_26-AM-07_40_48
Last ObjectModification: 2016_07_12-AM-08_06_46

Theory : euclidean!geometry

Home Index