### Nuprl Lemma : eu-congruent-comm

`∀e:EuclideanPlane. ∀[a,b,c,d:Point].  ba=dc supposing ab=cd`

Proof

Definitions occuring in Statement :  euclidean-plane: `EuclideanPlane` eu-congruent: `ab=cd` eu-point: `Point` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]`
Definitions unfolded in proof :  all: `∀x:A. B[x]` uall: `∀[x:A]. B[x]` uimplies: `b supposing a` member: `t ∈ T` prop: `ℙ` euclidean-plane: `EuclideanPlane`
Lemmas referenced :  euclidean-plane_wf eu-point_wf eu-congruent_wf eu-congruent-right-comm eu-congruent-left-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    ba=dc  supposing  ab=cd

Date html generated: 2016_05_18-AM-06_35_04
Last ObjectModification: 2016_04_28-PM-06_40_35

Theory : euclidean!geometry

Home Index