### Nuprl Lemma : eu-five-seg-compressed_wf

`∀[e:EuclideanPlane]. ∀[a,b,c,d,a',b',c',d':Point].  (FSC(a;b;c;d  a';b';c';d') ∈ ℙ)`

Proof

Definitions occuring in Statement :  eu-five-seg-compressed: `FSC(a;b;c;d  a';b';c';d')` euclidean-plane: `EuclideanPlane` eu-point: `Point` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` eu-five-seg-compressed: `FSC(a;b;c;d  a';b';c';d')` euclidean-plane: `EuclideanPlane`
Lemmas referenced :  and_wf eu-colinear_wf eu-cong-tri_wf eu-congruent_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d,a',b',c',d':Point].    (FSC(a;b;c;d    a';b';c';d')  \mmember{}  \mBbbP{})

Date html generated: 2016_05_18-AM-06_42_09
Last ObjectModification: 2015_12_28-AM-09_22_38

Theory : euclidean!geometry

Home Index