Nuprl Lemma : eu-inner-five-segment'

  ∀[a,b,c,A,B,C:Point].  (∀d,D:Point.  (bd=BD) supposing (cd=CD and ad=AD)) supposing (bc=BC and ac=AC and A_B_C and a_b\000C_c)


Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  euclidean-plane: EuclideanPlane prop: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  eu-inner-five-segment eu-congruent_wf eu-point_wf eu-between-eq_wf euclidean-plane_wf
Rules used in proof :  rename setElimination independent_isectElimination isectElimination isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lemma_by_obid cut

        (\mforall{}d,D:Point.    (bd=BD)  supposing  (cd=CD  and  ad=AD))  supposing  (bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_\000Cc)

Date html generated: 2016_05_18-AM-06_38_48
Last ObjectModification: 2016_01_02-PM-00_14_01

Theory : euclidean!geometry

Home Index