Nuprl Lemma : eu-seg-congruent_transitivity

e:EuclideanPlane. ∀[s1,s2,s3:Segment].  (s1 ≡ s3) supposing (s1 ≡ s2 and s2 ≡ s3)


Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-plane: EuclideanPlane uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a eu-seg-congruent: s1 ≡ s2 member: t ∈ T euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q squash: T prop:
Lemmas referenced :  euclidean-plane_wf eu-segment_wf eu-seg-congruent_wf eu-congruent-transitivity eu-seg2_wf eu-seg1_wf sq_stable__eu-congruent
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution cut lemma_by_obid dependent_functionElimination thin setElimination rename hypothesisEquality isectElimination hypothesis independent_functionElimination introduction because_Cache independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination

\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2,s3:Segment].    (s1  \mequiv{}  s3)  supposing  (s1  \mequiv{}  s2  and  s2  \mequiv{}  s3)

Date html generated: 2016_05_18-AM-06_36_46
Last ObjectModification: 2016_01_16-PM-10_30_43

Theory : euclidean!geometry

Home Index