### Nuprl Lemma : stable__colinear

`∀e:EuclideanStructure. ∀[a,b,c:Point].  Stable{Colinear(a;b;c)}`

Proof

Definitions occuring in Statement :  eu-colinear: `Colinear(a;b;c)` eu-point: `Point` euclidean-structure: `EuclideanStructure` stable: `Stable{P}` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]`
Definitions unfolded in proof :  all: `∀x:A. B[x]` uall: `∀[x:A]. B[x]` stable: `Stable{P}` uimplies: `b supposing a` member: `t ∈ T` not: `¬A` implies: `P `` Q` false: `False` prop: `ℙ` iff: `P `⇐⇒` Q` and: `P ∧ Q` rev_implies: `P `` Q` cand: `A c∧ B`
Lemmas referenced :  not_wf eu-colinear_wf eu-colinear-def and_wf equal_wf eu-point_wf eu-between_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination hypothesis rename independent_functionElimination impliesFunctionality productElimination promote_hyp independent_pairFormation

Latex:
\mforall{}e:EuclideanStructure.  \mforall{}[a,b,c:Point].    Stable\{Colinear(a;b;c)\}

Date html generated: 2016_05_18-AM-06_32_45
Last ObjectModification: 2015_12_28-AM-09_28_25

Theory : euclidean!geometry

Home Index