### Nuprl Lemma : ispair-implies-sq

`∀[t:Base]. t ~ <fst(t), snd(t)> supposing ispair(t) ~ tt`

Proof

Definitions occuring in Statement :  bfalse: `ff` btrue: `tt` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` pi1: `fst(t)` pi2: `snd(t)` ispair: `if z is a pair then a otherwise b` pair: `<a, b>` base: `Base` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` has-value: `(a)↓` btrue: `tt`
Lemmas referenced :  base_wf assert_of_tt ispair-implies is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule divergentSqle sqleReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesisEquality independent_isectElimination callbyvalueIspair sqequalAxiom sqequalIntensionalEquality baseApply closedConclusion isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  t  \msim{}  <fst(t),  snd(t)>  supposing  ispair(t)  \msim{}  tt

Date html generated: 2016_05_13-PM-03_27_28
Last ObjectModification: 2016_01_14-PM-06_43_29

Theory : call!by!value_1

Home Index