Nuprl Lemma : ispair-implies

[t:Base]. (t ~ <fst(t), snd(t)>supposing ((↑ispair(t)) and (t)↓)


Definitions occuring in Statement :  has-value: (a)↓ assert: b bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) ispair: if is pair then otherwise b pair: <a, b> base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ pi1: fst(t) pi2: snd(t) assert: b ifthenelse: if then else fi  btrue: tt implies:  Q prop: top: Top bfalse: ff false: False
Lemmas referenced :  base_wf ispair-bool-if-has-value assert_wf false_wf top_wf true_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin ispairCases divergentSqle hypothesis lemma_by_obid sqequalHypSubstitution isectElimination baseClosed hypothesisEquality sqequalRule lambdaFormation sqequalAxiom isect_memberEquality because_Cache voidElimination voidEquality independent_functionElimination independent_isectElimination equalityTransitivity equalitySymmetry

\mforall{}[t:Base].  (t  \msim{}  <fst(t),  snd(t)>)  supposing  ((\muparrow{}ispair(t))  and  (t)\mdownarrow{})

Date html generated: 2016_05_13-PM-03_27_24
Last ObjectModification: 2016_01_14-PM-06_43_21

Theory : call!by!value_1

Home Index