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Preface

In 1960 the mathematician Paul Halmos wrote a 104-page book called Näıve

Set Theory that made the subject accessible to generations of mathemati-
cians. This article interprets that book in an abbreviated manner to in-
troduce type theory and the approach to algorithms and computational
complexity theory inherent in computational type theory. I start by para-
phrasing the preface to Halmos’ book. The sections of this article follow his
chapters closely.

Every computer scientist agrees that every computer scientist must
know some type theory; the disagreement begins in trying to decide how
much is some. This article contains my partial answer to that question. The
purpose of the article is to tell the beginning student of advanced computer
science the basic type theoretic facts of life, and to do so with a minimum of
philosophical discourse and logical formalism. The point throughout is that
of a prospective computer scientist eager to study programming languages,
or database systems, or computational complexity theory, or distributed
systems or information discovery.

In type theory, “näıve” and “formal” are contrasting words. The present
treatment might best be described as informal type theory from a näıve
point of view. The concepts are very general and very abstract; therefore
they may take some getting used to. It is a mathematical truism, however,
that the more generally a theorem applies, the less deep it is. The student’s
task in learning type theory is to steep himself or herself in unfamiliar but
essentially shallow generalities until they become so familiar that they can
be used with almost no conscious effort.

Type theory has been well exposited in articles by N. G. de Bruijn and
the Automath group; the writings of Per Martin-Löf, the originator of many



of the basic ideas; the writings of Jean-Yves Girard, another originator; the
writings of the Coq group, the Cornell group, and the Gothenberg group;
and the writings of others who have collectively expanded and applied type
theory.

What is new in this account is treatment of classes and computational
complexity theory along lines that seem very natural. This approach to
complexity theory raises many new questions as can be seen by comparison
to the lectures of Niel Jones at the summer school.

Table of Contents

Section 1: Types and equality

Section 2: Subtypes and set types

Section 3: Pairs

Section 4: Union and intersection

Section 5: Functions and relations

Section 6: Universes, powers and openness

Section 7: Families

Section 8: Lists and numbers

Section 9: Logic and the Peano axioms

Section 10: Structures, records and classes

Section 11: The axiom of choice

Section 12: Computational complexity

1. Types and equality

Section 1 of Näıve Set Theory notes that the book will not define sets.
Instead an intuitive idea (perhaps erroneous) will be delineated by saying
what can be correctly done with sets. Halmos notes already on page one
that for the purposes of mathematics one can assume that the only members
of sets are other sets. It is believed that all mathematical concepts can be

coded as sets. This simplifying approach makes set theory superficially very
different from type theory.

Likewise, we delineate an intuition (possibly erroneous) about types:
that intuition might be acquired from programming languages or databases
or from set theory. We explain what can be correctly done with types, and
how they are used.

Beginning students of computer science might believe that the only
members of types need to be bits since all implementations ultimately re-



duce any data to bits. But this level of abstraction is too low to allow a good
mathematical theory. The right abstraction is at the “user level” where dis-
tinctions are made between numbers, characters, booleans and other basic
kinds of data. Type theory starts in the middle, axiomatizing the user-level
building blocks for computation and information. From these it is possible
to define realizations as bits — going “downward” to the machine — and
to define abstractions to classes, going “upward” to systems.

ELEMENTS

Types are collections of elements, possibly empty. Elements are the data.
When a type is defined, the structure of the elements is specified. A type
definition says how to construct elements and how to take them apart.
The basic way to do this is to provide a construction pattern. On top
of these, a more abstract characterization can then be given in terms of
operations called constructors and destructors. But in order to define these
computationally, we need at least one concrete symbolic representation of
the basic data. The representation must be concrete like bits but general
enough to naturally describe the objects we manipulate mentally when we
calculate.

The structure of data in type theory is given by abstract syntax. This
follows in the tradition of Lisp with its S-expressions as the basic data. To
define a type, we specify the form of its data elements. To say that we have
a data element is precisely to say that we have it in a specific predetermined
format. This is what is critical about all implementations of data types: we
must know the exact format. We call this exact format the canonical form

of the data. To have an element is to have access to its canonical form.

Let’s illustrate these ideas for the type of bits. The data elements we
normally have in mind are 0 and 1, but let us analyze what this choice
means. We could also think of bits as boolean values; then we might use true

and false. We might prefer the constants of some programming language
such as 0B, 1B.

The notion we have in mind is that there are two distinct symbols that
represent the bits, say 0, 1, and a bit is formed from them. We can say that
bit{0}, bit{1} are the data formats, or 0B, 1B are.

We intend that there are precisely two bits, given in distinct data for-
mats. To say this precisely we need a criterion for when two canonical data
elements are equal. For instance, we need to agree that we are using bit{0},
not 0B, or agree that bit{0} and 0B are equal. Defining a type means
settling these matters.

Let us agree that bit{0} and bit{1} are the data elements formed from
the distinct symbols 0 and 1. The only equalities are bit{0}=bit{0} and



bit{1}=bit{1}. These are required since equality must be an equivalence
relation — hence reflexive. How do we say that bit{0}6=bit{1}?

The answer comes from understanding what it means to take the data
elements apart or use them. Key to our notion of the type is that 0 and
1 are distinct characters. This is part of the type definition process, and
moreover we mean that we can effectively distinguish the two symbols. For
example, the operation to check for equality of bits could be to access the
parts inside {} and compare them. This depends on our presumed ability to
distinguish these characters. We can make the computation more abstract
by creating a computational form inside the type theory rather than relying
on our computational intuition about symbols so directly.

The way we accomplish the abstraction is to postulate an effective op-
eration on the data formats. The operation is to decide whether the data
is bit{0} or bit{1}. We represent this operation by a computation rule on
a syntactic form created explicitly to make decisions. Let us call the form
a conditional expression written as

if b then s else t fi.

The only meaning given to the form at this stage is in terms of the compu-
tation rules.

if bit{0} then s else t fi reduces to s
if bit{1} then s else t fi reduces to t

With this form we can distinguish bit{0} and bit{1} as long as we can
distinguish anything. That is, suppose we know that s6=t. Then we can
conclude that bit{0}6=bit{1} as long as if-then-else-fi respects equality. That
is, e1 = e2 should guarantee that

if e1 then s else t fi = if e2 then s else t fi.

Given this, if bit{0}=bit{1}, then s=t. Let’s take 0 for s and 1 for t.
Then since 06=1 as characters, bit{0}6=bit{1}.

Why don’t we just postulate that bit{0}6=bit{1}? One reason is that
this can be derived from the more fundamental computational fact about if-
then-else-fi. This computational fact must be expressed one way or another.
We’ll see later that a second reason arises when we analyze what it means
to know a proposition; knowing 06=1 is a special case.

EQUALITY

In a sense the equality relation defines the type. We can see this clearly in
the case of examples such as the integers with respect to different equali-
ties. Recall that “the integers modulo k,” Zk, are defined in terms of this
equivalence relation, mod(k), defined



x = y mod(m) iff (x − y) = k · m for some m.

Z2 equates all even numbers, and in set theory we think of Z2 as the
two equivalence classes (or residue classes)

{0,±2,±4, . . .} and {±1,±3,±5, . . .}.

It is easy to prove that x = y mod(k) is an equivalence relation. What
makes Zk so interesting is that these equivalence relations are also congru-
ences on the algebraic structure of Z with respect to addition (+), subtrac-
tion (−), and multiplication (∗).

In type theory we do not use equivalence classes to define Zk. Instead
we define Zk to be Z with a new equality relation. We say

Zk == Z//mod(k).

The official syntax is

Zk == quotient(Z;x, y.x = y mod(k)).

This syntax treats x, y.x+y mod(k) as a binding construct. The binding
variables x and y have as scope the expression following the dot. In general,
if A is a type and E is an equivalence relation on A, then A//E is a new
type such that x = y in A//E iff xEy.

Recall that an equivalence relation written xEy instead of the usual
relation notation E(x, y) satisfies:

1. xEx reflexivity

2. xEy implies yEx commutativity

3. xEy and yEz implies xEz transitivity

The official syntax is quotient(A; x, y. xEy).
These types, A//E, are called quotient types, and they reveal quite

clearly the fact that a type is characterized by its equality. We see that Z

and Z2 have the same elements but different equalities.

We extend the notion of membership from the canonical data to any
expression in this way. If expression a′ reduces to expression a, and a is
a canonical element of A, then a′ is an element of A by definition. For
example, if a ∈ A, then if bit{0} then a else b fi belongs to A as well.

If A is a type, and if a, b are elements of A, then a = b in A denotes the
equality on A. We require that equality respect computation. If a ∈ A and
a′ reduces to a, then a′ = a in A.

In set theory the membership proposition, “x is a member of y,” is writ-
ten x ∈ y. This proposition is specified axiomatically. It is not presented



as a relation defined on the collection of all sets. Because x ∈ y is a propo-
sition, it makes sense to talk about not x ∈ y, symbolically ¬(x ∈ y) or
x /∈ y.

In type theory, membership is not a proposition and not a relation on a
predefined collection of all objects that divides objects into types. We write
a in A to mean that a is an object of type A; this is a basic judgment. It
tells us what the form of object a is. If you like, A is a specification for how
to build a data object of type A. To judge a in A is to judge that indeed a
is constructed in this way.

It does not make sense to regard a in B as a proposition; for instance,
it is not clear what the negation of a in B would mean. To write a in B we
must first know that a is an object. So first we would need to know a in A
for some type A. That will establish what a is. Then if B is a type, we can
ask whether elements of A are indeed also elements of B.

We could define a relative membership relation which is a proposition,
say x ∈ B wrt A, read “x belongs to B with respect to A.” This means
that given x is of type A, this relation is true exactly when x is also in
the type B. We will have little occasion to use this predicate except as a
comparison to set theory. The reasons for its scarce use are discussed when
we talk about universes and open-endedness in Section 6. But we see next
a proposition that addresses some useful examples of relative membership.

2. Subtypes and set types

We say that A is a subtype of B (symbolically, A v B) if and only if a = a′

in A implies that a = a′ in B. Clearly A v A, and if A v B and B v C,
then A v C. For the empty type, void, void v A for any A.

The subtype relation induces an equivalence relation on types as follows.
Define A ≡ B if and only if A v B and B v A. Clearly A ≡ B is an
equivalence relation, i.e. A ≡ A, if A ≡ B then B ≡ A and if A ≡ B
and B ≡ C, then A ≡ C. This equivalence relation is called extensional

equality. It means that A and B have the same elements; moreover, the
equality relations on A and on B are the same.

In set theory, two sets S1, S2 are equal iff they have the same elements.
This is called extensional equality. Halmos writes this on page 2 as an axiom.
In type theory it is a definition not an axiom, and furthermore, it is not the
only equality on types. There is a more primitive equality that is structural

(or intensional); we will encounter it soon.

The subtype relation allows us to talk about relative membership. Given
a in A and given that B is a type, we can ask whether A v B. If A v B,
then we know that a in A implies a in B, so talking about the “B-like
structure of a” makes sense.



We now introduce a type that is familiar from set theory. Halmos takes
it up in his section 2 under the title “axiom of specification.” The axiom is
also called separation. He says that:

To every set A and to every condition S(x), there corresponds a
set B whose elements are exactly those elements x of A for which
S(x) holds.

This set is written {x : A | S(x)}. Halmos goes on to argue that given
the set B = {x : A | x /∈ x}, we have the curious relation

(∗) x ∈ B iff x ∈ A and x /∈ x.

If we assume that either B ∈ B or B /∈ B, then we can prove that B /∈ A.
Since A is arbitrary, this shows that either there is no set of all sets or else
the law of excluded middle, P or ¬P , does not hold on sets. The assumption
that there is a universal set and that the law of excluded middle is true
leads to the contradiction known as Russell’s paradox.

In type theory the set type is defined just as in set theory. To every
type A and relation S on A there is a type whose elements are exactly
those elements of A that satisfy S. The type is denoted {x : A | S(x)}. But
unlike in set theory, we cannot form B = {x : A | x ∈ x} because x ∈ x
is not a relation of type theory. It is a judgment. The closest proposition
would be relative membership: x ∈ y wrt A (but y must be a type).

Also unlike set theory, we will not assume the law of excluded middle,
for reasons to be discussed later. Nevertheless, we cannot have a type of all
types. The reasons are deeper, and are discussed in Section 6.

Notice that we do know this:

{x : A | S(x)} v A

Also we can define an empty type, void. We use ∅ as its display.

∅ = {x : A | x 6= x in A}.

We know that for any type B

∅ v B.

In type theory, we distinguish {x : A | x = x in A} from A itself. While
A ≡ {x : A | x = x in A}, we say that {x : A | S(x)} = {x : A′ | S′(x)} iff
A = A′ and S(x) = S ′(x) for all x.

Here is another interesting fact about subtyping.



Theorem 1 For all types A and equivalence relations E on A, A v A//E.

This is true because the elements of A and A//E are the same, and
since E is an equivalence relation over A, we know that E must respect the
equality on A, that is

x = x′ in A and y = y′ in A implies that xEy iff x′Ey′.

Thus, since xEx, then x = x′ in A implies xEx′.

3. Pairs

Halmos devotes one chapter to unordered pairs and another one to ordered

pairs. In set theory ordered pairs are built from unordered ones using a
clever “trick;” in type theory the ordered pair is primitive. Just as in pro-
gramming, ordered pairing is a basic building block. Ordered pairs are the
quintessential data elements. But unordered pairs are not usually treated
as distinct kinds of elements.

Given a type A, an unordered pair of elements can be defined as:

{x : A | x = a ∨ x = b}.

This is a type. We might also write it as {a, b}A. It is unordered because
{a, b}A ≡ {b, a}A. We’ll see that this notion does not play an interesting
role in type theory. It does not behave well as a data element, as we see
later.

Given types A,B, their Cartesian product, A×B, is the type of ordered
pairs, pair(a; b). We abbreviate this as < a, b >. Given a in A, b in B,
then < a, b > in A × B. The constructor pair(a; b) structures the data.
The obvious destructors are operations that pick out the first and second
elements:

1of(< a, b >) = a 2of(< a, b >) = b.

These can be defined in terms of a single operator, spread(), which splits
a pair into its parts. The syntax of spread() involves the idea of binding

variables. They are used as a pattern to describe the components. Here is
the full syntax and the rules for computing with it.



If p is a pair, then spread(p;u, v.g) describes an operator g for
decomposing it as follows:

spread(< a, b >;u, v.g) reduces in one step to g[a/u, b/v]

where g[a/u, b/v] is the result of substituting a for the variable
u, and b for the variable v.

Define

1of(p) == spread(p;u, v.u)
2of(p) == spread(p;u, v.v).

Notice that

spread(< a, b >;u, v.u) reduces to a
spread(< a, b >;u, v.v) reduces to b.

Is there a way to treat {a, b} as a data element analogous to < a, b >? Can
we create a type Pair(A;B) such that

{a, b} in Pair(A;B)
{a, b} = {b, a} in Pair(A;B) and Pair(A;B) = Pair(B;A)?

If we had a union type, A∪B, we might define the pairs as {a, b} = {x :
A ∪ B|(x = a in A) or (x = b in B)}, and let Pair(A;B) be the collection
of all such pairs. We exploe this collection later, in Sections 4 and 6.

How would we use {a, b}? The best we can do is pick elements from the
pair, say pick(p;u, v.g) and allow either reduction:

pick({a, b};u, v.g) reduces either to g[a/u, b/v] or to g[b/u, a/v].

4. Union and intersection

Everyone is familiar with taking unions and intersections of sets and writing
them in the standard cup and cap notations respectively, as in the union
X ∪ Y and intersection X ∩ Y . These operations are used in type theory
as well, with the same notations. But the meanings go beyond the set idea,
because the definitions must take account of equalities.

Intersection is the easier idea. If A and B are types, then equality holds
on A ∩ B when it holds in A and in B; that is,

a = b in A ∩ B iff a = b in A and a = b in B.

In particular,

a = a in A ∩ B iff a = a in A and a = a in B.



For example, Z2 ∩ Z3 has elements such as 0, since 0 = 0 in Z2 and
0 = 0 in Z3. And 0 = 6 holds in Z2 ∩Z3 since 0 = 6 in Z2 and 0 = 6 in Z3.
In fact, Z2 ∩ Z3 = Z6.

Intersections can be extended to families of types. Suppose B(x) is a
type for every x in A. Then ∩x :A. B(x) is the type such that

b = b′ in ∩ x :A. B(x) iff b = b′ in B(x) for all x in A.

For example, if Nk = {0, . . . , k−1} and N
+ = {1, 2, . . .} then ∩x : N

+.Nx

has only 0 in it.
It is interesting to see what belongs to ∩x : A. B(x) if A is empty. We

can show that there is precisely one element, and any closed expression of
type theory denotes that element. We give this type a special name because
of this interesting property.

Definition Top == ∩x :void. x, for void, the empty type.

Theorem 2 If A,A′ are types and B(x) is a family of types over A, then

1. A ∩ A′ v A A ∩ A′ v A′

2. ∩x :A. B(x) v B(a) for all a in A
3. A v Top
4. If C v A and C v A′, then C v A ∩ A′

If A and B are disjoint types, say A∩B = void, then their union, A∪B,
is a simple idea, namely

a = b in A ∪ B iff a = b in A or a = b in B.

In general we must consider equality on elements that A and B have in
common. The natural thing to do is extend the equality so that if a = a′

in A and a′ = b in B, then a = b in A ∪ B. Thus the equality of A ∪ B is
the transitive closure of the two equality relations, i.e.

a = b in A ∪ B iff a = b in A or a = b in B or

∃ c : A∪B a = c in A∪B and c = b in A∪B.

Note in Z2 ∪ Z3 all elements are equal, and Z4 ∪ Z6 = Z2.

Exercise: What is the general rule for membership in Zm ∪ Zn?

Exercise: Unions can be extended to families of types. Give the definition
of ∪x :A. B(x). See the Nuprl Web page under basic concepts, unions,
for the answer.

Theorem 3 If A and A′ are types and B(x) is a family of types over A,

then

1. A v A ∪ A′ A′ v A ∪ A′



2. B(a) v ∪x :A. B(x) for all a in A
3. If A v C and A′ v C, then A ∪ A′ v C.

In set theory the disjoint union A ⊕ B is defined by using tags on the
elements to force disjointness. We could use the tags inl and inr for the
left and right disjuncts respectively. The definition is

A ⊕ B = {< inl, a >,< inr, b > | a ∈ A, b ∈ B}.

The official definition is a union:

({inl} × A) ∪ ({inr} × B).

We could define a disjoint union in type theory in a similar way. Another
approach that is more common is to take disjoint union as a new primitive
type constructor, A + B.

If A and B are types, then so is A + B, called their disjoint union. The
elements are inl(a) for a in A and inr(b) for b in B.

The destructor is decide(d;u.g1 ; v.g2), which reduces as follows:

decide(inl(a);u.g1 ; v.g2) reduces to g1[a/u] in one step

decide(inr(b);u.g1 ; v.g2) reduces to g2[b/v] in one step.

Sometimes we write just decide(d; g1 ; g2), if g1 and g2 do not depend on
the elements of A and B, but only on the tag. In this way we can build a
type isomorphic to Bit by forming Top + Top.

5. Functions and relations

We now come to the heart of type theory, an abstract account of computable

functions over all types. This part of the theory tells us what it means to
have an effectively computable function on natural numbers, lists, rational
numbers, real numbers, complex numbers, differentiable manifolds, tensor
algebras, streams, on any two types whatsoever. It is the most comprehen-
sive theory of effective computability in the sense of deterministic sequential
computation. Functions are the main characters of type theory in the same

way that sets are the main characters of set theory and relations are the

main characters of logic. Types arise because they characterize the domains
on which an effective procedure terminates.

The computational model is more abstract than machine models, say
Turing machines or random access machines or networks of such machines.
Of all the early models of computability, this account is closest to the idea of
a high-level programming language or the lambda calculus. A distinguishing
feature is that all of the computation rules are independent of the type of



the data, e.g., they are polymorphic. Another distinguishing feature is that
the untyped computation system is universal in the sense that it captures at
least all effective sequential procedures — terminating and non-terminating.

FUNCTIONS

If A and B are types, then there is a type of the effectively computable
functions from A to B, and it is denoted A → B. Functions are also
data elements, but the operations on functions do not expose their in-
ternal structure. We say that the canonical form of this data is λ(x. b). The
symbol lambda indicates that the object is a function. (Having any partic-
ular canonical form is more a matter of convenience and tradition, not an
essential feature.) The variable x is the formal input, or argument. It is a
binding variable that is used in the body of the function, b, to designate the
input value. The body b is the scope of this binding variable x. Of course
the exact name of the variable is immaterial, so λ(x. b) and λ(y. b[y/x])
are equal canonical functions.

The important feature of the function notation is that the body b is an
expression of type theory which is known to produce a value of type B after

finitely many reduction steps provided an element of type A, say a, is input
to the function. The precise number of reduction steps on input a is the
time complexity of λ(x. b) on input a. We write this as

b[a/x] ↓ b′ in n steps

Recall that b[a/x] denotes the expression b with term a substituted for
all free occurrences of x. A free occurrence of x in b is one that does not
occur in any subexpression c which is in the scope of a binding occurrence
of x, i.e. not in λ(x. c) or spread(p;u, v.c), where one of u, v is x. The
notion of binding occurrence will expand as we add more expressions to
the theory. The above definition applies, of course, to all future extensions
of the notion of a binding occurrence.

The simplest example of a computable function of type A → A is the
identity function λ(x. x). Clearly if a ∈ A, then x[a/x] is a ∈ A.

If a0 is a constant of type A, then λ(x. a0) is the constant function
whose value is a0 on any input. Over the natural numbers, we will have
functions such as λ(x. x + 1), the successor, λ(x. 2 ∗ x), doubling, etc.

We say that two functions, f and g, are equal on A → B when they
produce the same values on the same inputs.

(f = g in A → B) iff f(a) = g(a) in B for all a in A.

This relation is called extensional equality. It is not the only sensible
equality, but it is the one commonly used in mathematics.



We might find a tighter (finer) notion of equality more useful in com-
puting, but no widely agreed-upon concept has emerged. If we try to look
closely at the structure of the body b, then it is hard to find the right “focal
length.” Do we want the details of the syntax to come into focus or only
some coarse features of it, say the combinator structure?

Functions are not meant to be “taken apart” as we do with pairs, nor do
we directly use them to make distinctions, as we use the bits 0, 1. Functions
are encapsulations of computing procedures, and the principal way to use
them is to apply them. If f is a function, we usually display its application
as f(a) or fa. To conform to our uniform syntax, we write application
primitively as ap(f ; a) and display this as f(a) or fa when no confusion
results.

The computation rule for ap(f ; a) is to first reduce the expression for
f to canonical form, say λ(x. b), and then to reduce ap(λ(x. b); a). One
way to continue is to reduce this to b[a/x] and continue. Another way is
to reduce a, say to a′, and then continue by reducing b[a′/x]. The former
reduction method is called call by name and the latter is call by value. We
will use both kinds, writing apv(f ; a) for call by value.

Notice that when we use call by name evaluation, the constant function
λ(x. a0) maps B into A for any type B, even the void type. So if a0 ∈ A,
then λ(x. a0) ∈ B → A for any type B.

The function λ(x. λ(y.x)) has the type A → (B → A) for any types
A and B, regardless of whether they are empty or not. We can see this as
follows. If we assume that z is of type A, then ap(λ(x. λ(y. x)); z) reduces
in one step to λ(y. z). By what we just said about constant functions,
this belongs to (B → A) for any type B. Sometimes we call the func-
tion λ(x. λ(y.x)) the K combinator. This stresses its polymorphic nature
and indicates a connection to an alternative theory of functions based on
combinators.

Exercise: What is the general type of these functions?

1. λ(x. λ(y. < x, y >))

2. λ(f. λ(g. λ(x. g(x)(f(x)))))

The function in (1) could be called the Currying combinator, and Curry
called the function in (2) the S combinator; it is a form of composition.

The function λ(f.λ(g.λ(x.g(f(x))))) belongs to the type (A → B) →
((B → C) → (A → C)) because for x ∈ A, f(x) ∈ B and g(f(x)) ∈ C.
This is a composition combinator, Comp. It shows clearly the polymorphic
nature of our theory. We can express this well with intersection types:

Comp in (∩A,B,C : Type. (A → B) → ((B → C) → (A → C))).



We will need to discuss the notion A : Type etc. in Section 6 before this is
entirely precise.

There are polymorphic λ-terms that denote sensible computations but
which cannot be directly typed in the theory we have presented thus far.
One of the most important examples is the so-called Y-combinator discov-
ered by Curry,

λ(f. λ(x.f(xx))λ(x.f(xx))).

The subtyping relation on A → B behaves like this:

Theorem 4 For all types A v A′, B v B′

A′ → B v A → B′.

To see this, let f = g ∈ A′ → B. We prove that f = g in A → B ′. First
notice that for a ∈ A, we know a ∈ A′, thus f(a′) and g(a′) are defined,
and f(a′) = g(a′) in B. But B v B ′, so f(a′) = g(a′) in B′.

This argument depends on the polymorphic behavior of the functions;
thus, if f(a) terminates on any input in A′, it will, as a special case, termi-
nate for any element of a smaller type. We say that v is co-variant in the
domain.

In set theory, functions are defined as single-valued relations, and rela-
tions are defined as sets of ordered pairs. This reduces both relations and
functions to sets, and in the process the reduction obliterates any direct
connection between functions and algorithms.

A function f ∈ A → B does generate a type of ordered pairs called its
graph, namely

graph(f) = {x : A × B|f(1of(x)) = 2of(x) in B}.

Clearly graph(f) v A × B, somewhat as in set theory. If we said that
a relation R on A × B is any subtype of A × B, then we would know that
R v A × B. But we will see that in type theory we cannot collect all such
R in a single “power type.” Let us see how relations are defined in type
theory.

RELATIONS

Since functions are the central objects of type theory, we define a relation as
a certain kind of function, a logical function in essence. This is Frege’s idea
of a relation. It depends on having a type of propositions in type theory.
For now we denote this type as Prop, but this is amended later to be Propi

for fundamental reasons.



A relation on A is a propositional function on A, that is, a function
A → Prop. Here are propositional functions we have already encountered:

x = y in A

is an atomic proposition of the theory. From it we can define two proposi-
tional functions:

λ(x. λ(y. x = y in A)) in A → (A → Prop)

λ(p. 1of(p) = 2of(p) in A) in A × A → Prop.

We also discussed the proposition

x ∈ B wrt A,

from which we can define the propositional function

λ(x. x ∈ B wrt A) in A → Prop for a fixed B.

This propositional function is well-defined iff

x = y in B implies that (x ∈ B wrt A)

is equal to the proposition

(y ∈ B wrt A).

The type Prop includes propositions built using the logical operators

& (and), ∨ (or), ⇒ (implies), and ¬ (not), as well as the typed quantifiers

∃x : A (there is an x of type A) and ∀x : A (for all x of type A). We mean
these in the constructive sense (see Section 9).

6. Universes, powers and openness

In set theory we freely treat sets as objects, and we freely quantify over
them. For example, the ordered pair < x, y > in set theory is {x, {x, y}}.
We freely form nested sets, as in the sequence starting with the empty set:
∅, {∅}, {{∅}}, {{{∅}}}, . . . All of these are distinct sets, and the process can
go on indefinitely in “infinitely many stages.” For example, we can collect
all of these sets together

{∅, {∅}, {{∅}}, {{{∅}}}, . . .}

and then continue {{∅, {∅}, . . .}}, {{{∅, {∅}, . . .}}}. There is a precise no-
tion called the rank of a set saying how often we do this.



In set theory we are licensed to build these more deeply nested sets
by various axioms. The axiom to justify {∅, {∅}, {{∅}}, {{{∅}}}, . . .} is the
axiom of infinity. Another critical axiom for nesting sets is called the power

set axiom. It says that for any set x, the set of all its subsets exists, called
P(x), the power set of x. One of its subsets is {x}; another is ∅.

In type theory we treat types as objects, and we can form {∅}, {{∅}}, . . .
But the licensing mechanism is different, and types are not much used
as objects of computation, because more efficient data is available and is
almost always a better choice.

The licensing mechanism for building large sets is critical because
paradoxes arise if sets are allowed to be “too large,” as with a set of all
sets, called a universe. A key idea from set theory is used to justify large
types. The idea is this: if we allow a fixed number of ways of building sets
safely, such as unions, separation, and power sets, then we can form a safer
kind of universe defined by allowing the iteration of all these operations
indefinitely. This is the idea of a universe in type theory.

A universe is a collection of types closed under the type-building opera-
tions of pairing, union, intersection, function space and other operations
soon to be defined. But it is not closed under forming universes (though a
controlled way of doing this is possible), and we keep careful track of how
high we have gone in this process. As a start, we index the universes as
U1, U2, U3, . . . The elements are codes that tell us precisely how to build
types. We tend to think of these indices as the types themselves.

Here is how we can use a universe to define {∅}. Recall that ∅, the void
type, could be defined as {x : B | x 6= x in B}. This type belongs to Ui

for all i. Now define {∅} as {x : U1| x = ∅ in U1}. In our type theory, we
cannot define this set without mentioning U1. Thus we are forced to keep
track of the universe through which a type of this sort is admitted.

With universes we can define a limited power type, namely

Pi(A) = {x : Ui|x v A}.

These might be seen as “pieces” of some ideal P(A) for any type A. But
we do not know a provably safe way to define the ideal P(A).

The universe construction forms a cumulative hierarchy, U1 ∈ U2, U2 ∈
U3, . . . , and Ui v Ui+1. Note that Top in Ui for all i, and yet Ui v Top.
There is nothing like Top in set theory.

7. Families

Unions, intersections, products and function spaces can all be naturally
extended from pairs of types to whole families. We saw this already in the
case of unions. Halmos devotes an entire chapter to families.



Let us consider the disjoint union of a family of types indexed by a type
A, that is, for every x in A, there is a type B(x) effectively associated to
it. The disjoint union in both set theory and type theory is denoted by
Σx : A. B(x), and the elements are pairs < a, b > such that b in B(a).
In type theory this is a new primitive type constructor, but it uses the
pairing operator associated with products. It also uses spread(p;u, v.g) to
decompose pairs. Unlike pairing for products where A×B is empty if either
A or B is, the disjoint union is not empty unless all of the B(x) for each x
in A are empty.

In set theory the disjoint union of a family of types is defined in terms
of A × ∪x :A. B(x),

Σx :A. B(x) = {p : A × ∪x :A. B(x)|1of(p) ∈ A & 2of(p) ∈ B(1of(p))}

and where the ordinary union ∪x : A. B(x) is defined as the union of the
range of the function B from A into sets, e.g. ∪{B(x)|x ∈ A}.

The type Σx :A. B(x) behaves both like a union and a product. It is a
product because its elements are pairs, so we expect the type to be related
to A × B. But it is not like a product in that it can be nonempty even if
one of the B(x) types is empty.

One reason for computer scientists to think of this as a product is that
it is called a variant record in the literature of programming languages, and
records are treated as products. It is a “variant” record because the initial
componenents (leftmost) can influence the type of the later ones, causing
them to “vary.”

As a product, we call this type a dependent product, and we employ
notation reminiscent of products, namely

x : A × B(x)

where x is a binding variable, bound to be of type A and having scope

B(x). So

y : A × B(y)

is the same type as (equal to) x : A × B(x).
Here is an example of this type. We’ll consider which alternative view

is most natural. Suppose the index set (first component) is in N
2 + R

2;
thus it is either a pair of natural numbers or a pair of computable reals.
Suppose the second component will be a number representing the area of
a rectangle defined by the first pair. Its type will be N or R, depending on
the first value. To define this, let Area(x) be defined as

Area(x) = decide(x; N; R)



(or, more informally, Area(x) = if is left(x) then N else R fi). The type
we want is Σx : (N2 +R

2). Area(x), or equivalently x : (N2 +R
2)×Area(x).

How do we think of this? Is it a union of two types (N2 ×N) and (R2 ×R),
or does it describe data that looks like < inl(< nat, nat >), nat > or
< inr(< real, real >), real >?

There are examples where the contrast is clearer. One of the best is the
definition of dates as < month, day >, where

Month = {1, . . . , 12} and
Day(2) = {1, . . . , 28}
Day(i) = {1, . . . , 30} for i = 3, 6, 9, 11
Day(i) = {1, . . . , 31} otherwise.

Date = m : Month × Day(m) seems like the most natural description of
the data we use to represent dates, and the idea behind it is clearly a pair
whose second component depends on the first.

We can also extend the function space constructor to families, forming
a dependent function space. Given the family B(x) indexed by A, we form
the type

x : A → B(x).

The elements are functions f such that for each a ∈ A, f(a) in B(a).
In set theory the same type is called an infinite product of a family,

written Πx :A. B(x), and defined as

{f : A → ∪x :A. B(x)| ∀x :A. f(x) ∈ B(x)}.

An example of such a function takes as input a month, and produces the
maximum day of the month — call it maxday. It belongs to

m : Month → Day(m).

The intersection type also extends naturally to families, yet this notion
was only recently discovered and exploited by Kopylov, in ways that we
illustrate later. Given type A and family B over A, define

x : A ∩ B(x)

as the collection of elements x of A such that x is also in B(x). If a = b in
A and a = b in B(a), then a = b in x : A ∩ B(x).

8. Lists and numbers

The type constructors we have examined so far all build finite types from
finite types. The list constructor is not this way. The type List(A) is lim-
itless or infinite if there is at least one element in A. Moreover, the type



List(A) is inductive. From List(A) we can build the natural numbers, an-
other inductive type. These types are an excellent basis for a computational
understanding of the infinite and induction.

In set theory induction is also important, but it is not as explicitly
primitive; it is somewhat hidden in the other axioms, such as the axiom of
infinity—which explicitly provides N—and the axiom of regularity, which
provides for (transfinite) induction on sets by asserting that every ε-chain
x1 ∈ x0, x2 ∈ x1, x3 ∈ x2, . . . must terminate.

If A is a type, then so is List(A). The canonical data of List(A) is either
the empty list, nil, or it is a list built by the basic list constructor, or cons

for short. If L is a list, and a in A, then cons(a;L) is a list. The standard
way to show such an inductive construction uses the pattern of a rule,

a in A L in List(A)

cons(a;L) in List(A).

Here are some lists built using elements a1, a2, a3, . . . The list nil is
in any type List(A) for any type A, empty or not. So List(A) is always

nonempty. Next, cons(a1;nil) is a list, and so are

cons(a1;nil), cons(a1; cons(a1;nil)), cons(a1; cons(a2;nil)),

and so forth. We typically write these as

[a1], [a1, a2], [a1, a2, a3].

If A is empty, then List(A) has only nil as a member.
Here is a particularly clear list type. Let 1 be the type with exactly

one element, 1. Then the list elements can be enumerated in order, nil,
cons(1;nil), cons(1; cons(1;nil)), cons(1; cons(1; cons(1;nil))), . . . We will
define the natural numbers to be this type List(1). The type List(Top) is
isomorphic to this since Top has just one element, but that element has a
limitless number of canonical names.

The method of destructing a list must make a distinction between
nil and cons(a;L). So we might imagine an operator like spread, say
dcons(L; g1;u, t.g2) where dcons(nil; g1;u, v.g1) reduces to g1 in one step
and dcons(cons(a;L); g1, u, t.g2) reduces to g2[a/u, L/t] in one step. This
allows us to disassemble one element. The power of lists comes from the
inductive pattern of construction,

a in A L in List(A)

cons(a;L) in List(A).

This pattern distinguishes List(A) from all the other types we built, making
it infinite. We need a destructor which recognizes this inductive character,
letting us apply dcons over and over until the list is eventually nil.



How can we build an inductive list destructor? We need an inductive
definition for it corresponding to the inductive pattern of the elements. But
just decomposing a list will be useless. We want to leave some trace as we
work down into this list. That trace can be the corresponding construction
of another object, perhaps piece by piece from the inner elements of the
list.

Let’s imagine that build(L) is constructing something from L as it is
decomposed. Then the inductive pattern for building something in B is just
this:

build b0 in B
a in A, assume b in B is built from L

combine a, L, and b to build g(a, L, b) in B.

This pattern can be expressed in a recursive computation on a list

build(nil) = b0 build(cons(a;L)) = g(a, L, build(L)).

This pattern can be written as a simple recursive function if we use dcons
as follows:

f(L) = dcons(L; b0;u, t.g(u, t, f(t)).

There is a more compact form of this expression that avoids the equa-
tional form. We extend dcons to keep track of the value being built up. The
form is list ind(L; b0;u, t, v.g(u, t, v)), where v keeps track of the value.

We say that list ind(L; b0;u, t, v.g(u, t, v)) in B, provided that b0 in B
and assuming that u ∈ A, t ∈ List(A) and v in B, then g(u, t, v) in B.

The reduction rule for list ind is just this:

list ind(nil; b0;u, t, v.g(u, t, v)) reduces to b0

list ind(cons(a;L); b0;u, t, v.g(u, t, v)) reduces to g(a, L, v0)

where v0 = list ind(L; b0;u, t, v.g(u, t, v)).
There are several notations that are commonly adopted in discussing

lists. First, we write cons(a; l) as a.l. Next we notice that

list ind(l; a;u, t, v.b)

where v does not occur in b is actually just a case split on whether l is nil
followed by a decomposition of the cons case. We write this as:

case of l; nil → b; a.t → b

Here are some of the basic facts about lists along with a sketch of how
we prove them.

Fact: nil 6= cons(a;L) in List(A) for any a or L.



This is because if nil = cons(a;L) in List(A), then list ind(x; 0;u, t, v.1)
would reduce in such a way that 0 = 1, which is a contradiction. The basic
fact is that all expressions in the theory respect equality.

One of the most basic operations on lists is appending one onto another,
say [a1, a2, a3]@[a4, a5] = [a1, a2, a3, a4, a5]. Here is a recursive definition:

x@y = case of x;nil → y; a.t → a.(t@y).

This abbreviates

list ind(x;λ(y.y); a, t, v.λ(y.a.v(y))).

Fact: For all x, y, z in List(A), (x@y)@z = x@(y@z).

We prove this by induction on x. The base case is (nil@x)@y = nil@(x@y).
This follows immediately from the nil case of the definition of @.

Assuming that (t@x)@y = t@(x@y), then ((u.t)@y)@z = u.t@(y@z)
again follows by the definition of @ in the cons case. This ends the proof.

If f is a function from A to B, then here is an operation that applies it
to every element of l in List(A):

map(f ; l) = case of l; nil → nil; a.t → f(a).map(f ; t).

Fact: If f : A → B and g : B → C and l : List(A), then map(g;map(f ; l))
= map(λ(x.g(f(x))); l) in List(C).

Fact: If f : A → B and x, y : List(A), then map(f ;x@y) = map(f ;x)
@map(f ; y) in List(B).

Fact: x@y = nil in List(A) iff x = nil and y = nil in List(A).

Exercise: What would List({nil}) look like? Do all the theorems still work
in this case? How does this compare to List(∅)?

9. Logic and the Peano axioms

Following the example of Halmos, we have avoided attention to logical
matters, but there is something especially noteworthy about logic and type
theory. We use logical language in a way that is sensitive to computational

meaning. For instance, when we say ∃x :A. B(x), read as “we can find an x
of type A such that B(x),” we mean that to know that this proposition is
true is to be able to exhibit an object a of type A, called the witness, and
evidence that B(a) is true; let this evidence be b(a). It turns out that we
can think of a proposition P as the type of evidence for its truth. We require
of the evidence only that it carry the computational content of the sense of
the proposition. So in the case of a proposition of the form ∃x : A. B(x),



the evidence must contain a witness a and the evidence for B(a). We can
think of this as a pair, < a, b(a) >.

When we give the type of evidence for a proposition, we are specifying
the computational content. Here is another example. When we know P
implies Q for propositions P and Q, we have an effective procedure for
taking evidence for P into evidence for Q. So the computational content
for P implies Q is the function space P → Q, where we take P and Q to
be the types of their evidence.

This computational understanding of logic diverges from the “classical”
interpretation. This is especially noticeable for statements involving or. To
know (P or Q) is to either know P or know Q, and to know which. The
rules of evidence for (P or Q) behave just as the rules for elements of the
disjoint union type, P + Q.

The computational meaning of ∀x : A. B(x) is that we can exhibit
an effective method for taking elements of A, a, to evidence for B(a). If
b(a) is evidence for B(a) given any element of a in A, then λ(x. b(x)) is
computational evidence for ∀x :A. B(x). So the evidence type behaves just
as x : A → B(x).

For atomic propositions like a = b in B, there is no interesting computa-
tional content beyond knowing that when a and b are reduced to canonical
form, they will be identical, e.g. bit{0} = bit{0} or bit{1} = bit{1}. For
the types we will discuss in this article, there will be no interesting compu-
tational content in the equality proposition, even in f = g in A → B. We
say that the computational content of a = b in A is trivial. We will only be
concerned with whether there is evidence. So we take some atomic object,
say is true, to be the evidence for any true equality assertion.

What is remarkably elegant in this account of computational logic is
that the rules for the evidence types are precisely the expected rules for the
logical operators. Consider, for example, this computational interpretation
of ∃x :A.¬Q(x) implies (∀x :A. (P (x) ∨ Q(x)) implies ∃x :A. P (x).

To prove ∃x : A. P (x), let a be the element of A such that ¬Q(a). We
interpret ¬S for any proposition S as meaning S implies False, and the
evidence type for False is empty. Taking a for x in ∀x : A.(P (x)∨Q(x)) we
know P (a) ∨ Q(a). So there is some evidence b(a) which is either evidence
for P (a) or for Q(a). We can analyze b(a) using decide since P (a) ∨ Q(a)
is like P (a) + Q(a). If b(a) is in P (a) then we have the evidence needed. If
b(a) is in Q(a), then since we know Q(a) → False, there is a method, call
it f , taking evidence for Q(a) into False.

To finish the argument, we look at the computational meaning of the
assertion (False implies S) for any proposition S. The idea is that False
is empty, so there is no element that is evidence for False. This means that



if we assume that x is evidence for False, we should be able to provide
evidence for any proposition whatsoever.

To say this computationally, we introduce a form any(x) with the typing
rule that if x is of type False, then any(x) is of type S for any proposition
S.

Now we continue the argument. Suppose b(a) is in Q(a). Then f(b(a)) is
in False, so any(f(b(a))) is in P (a). Thus in either case of P (a) or Q(a) we
can prove the ∃x :A. P (a). Here is the term that provides the computation
we just built:

λ(e.λ(all.decide(all(1of(e));
p.p;
q.any(f(q))))).

Note that e is evidence for ∃x : A.¬Q(x), so 1of(e) belongs to A. The
function all produces the evidence for either P (a) or Q(a), so all(1of(e))
is what we called b(a). We use the decide form to determine the kind of
evidence b(a) is; in one case we call it p and in the other q. So any(f(q)) is
precisely what we called any(f(b(a))) in the discussion.

Now we turn to using this logic. In 1889 Peano provided axioms for
the natural numbers that have become a standard reference point for our
understanding of the properties of natural numbers. We have been using N

to denote these numbers (0, 1, 2, . . . ).
Set theory establishes the adequacy of its treatment of numbers by

showing that the set of natural numbers, ω, satisfies the five Peano axioms.
These axioms are usually presented as follows, where s(n) is the successor

of n.

1. 0 is a natural number, 0 ∈ N.
2. If n ∈ N, then s(n) ∈ N.
3. s(n) = s(m) implies n = m.
4. Zero has no predecessor, ¬(s(n) = 0).
5. The induction axiom, if P (0), and if P (n) implies P (s(n)), then P

holds for all natural numbers.

In set theory axioms 1 and 2 are part of the definition of the axiom
of infinity; axiom 3 is a general property of the successor of a set defined
as s(x) = x ∪ {x}. Induction comes from the definition of ω as the least
inductive subset of the postulated infinite set.

In type theory we also deal with axioms 1 and 2 as part of the definition.
One way to treat N is to define it as a new type whose canonical members
are 0, s(0), s(s(0)), and so forth, say using these rules:

0 in N
n in N

s(n) in N.



Another approach is to define N using lists. We can take N as List(1),
with nil as 0 and cons(1;n) as the successor operation. Then the induction
principle follows as a special case of list induction.

In this definition of N, the addition operation x+y corresponds exactly
to x@y, e.g. 2 + 3 is just [1, 1]@[1, 1, 1].

Exercise: Show how to define multiplication on lists.

10. Structures, records and classes

Bourbaki’s encyclopedic account of mathematics begins with set theory,
and then treats the general concept of a structure. Structures are used to
define algebraic structures such as monoids, groups, rings, fields, vector
spaces, and so forth. They are also used to define topological structures
and order structures, and then these are combined to provide a modular
basis for real analysis and complex analysis.

STRUCTURES

The idea of a structure is also important in computer science; they are the
basis for modules in programming languages and for classes and objects in
object-oriented programming. Also, just as topological, order-theoretic, and
algebraic structures are studied separately and then combined to explain
aspects of analysis, so also in computing, we try to understand separate
aspects of a complex system and then combine them to understand the
whole.

The definition of structures in set theory is similar to their definition
in type theory, as we next illustrate; later we look at key differences. In
algebra we define a monoid as a structure < M, op, id >, where M is a set,
op is an associative binary operation on M , and id is a constant of M that
behaves as an identity, e.g.

x op id = x and id op x = x.

A group is a structure < G, op, id, inv > which extends a monoid by in-
cluding an inverse operator, e.g.

x op inv(x) = id and inv(x) op x = id.

In algebra, a group is considered to be a monoid with additional struc-
ture. These ideas are naturally captured in type theory in nearly the same
way. We start with a structure with almost no form,

A : Ui × Top.



This provides a carrier A and a “slot” for its extension. We can extend by
refining Top to have structure, for example, B×Top. Notice that B×Top v
Top, and

A × (B × Top) v A × Top, since
A v A and B × Top v Top.

Generally,
A × (B × (C × Top)) v A × (B × Top).

We can define a monoid as a dependent product:

M : Ui × ((M → (M → M)) × (M × Top)).

An element has the form < M,< op,< id, • >>> where:

M in Ui, op in M → (M → M), id ∈ M, and • in Top.

Call this structure Monoid.
A group is an extension of a monoid which includes an inverse operator,

inv : G → G. So we can define the type Group as

G : Ui × (G → (G → G) × (G × ((G → G) × Top))).

It is easier to compare these dependent structures if we require that the
type components are related. So we define parameterized structures. We
specify the carrier C of a monoid or group, etc., and define

Monoid(C) = C → (C → C) × (C × Top)
Group(C) = C → (C → C) × (C × (C → C × Top)).

Then we know

Fact: If M ∈ Ui, then Group(M) v Monoid(M).

Exercise: Notice that G v M need not imply that

Group(G) v Monoid(M).

These subtyping relationships can be extended to richer structures such
as rings and fields, though not completely naturally. For example, a ring
consists of two related structures: a group part (the additive group) and a
monoid part (the multiplicative monoid). We can combine the structures
as follows, putting the group first:

Ring(R) = R → (R → R)×((R×(R → R)×(R → (R → R)×(R×Top)))).

We can say that Ring(R) v Group(R), but it is not true that the
multiplicative structure is directly a substructure of Monoid(R). We need
to project it off,

Mult Ring(R) = (R → (R → R) × (R × Top)).

Then we can say Mult Ring(R) v Monoid(R). Given a ring



Rng in Ring(R),

< R,< add op,< add id,< add inv,< mulop,< mulid, • >>>>>>,

we can project out the multiplicative part and the additive part:

add(Rng) = < add op,< add id,< add inv,− >>>
mul(Rng) = < mulop,< mulid, • >>,

and we know that add(Rng) in Group(R) and mul(Rng) in Monoid(R).

RECORDS

Our account of algebraic structure so far is less convenient than the informal
one on which it is based. One reason is that we must adhere to a particular
ordering of the components and access them in this order. Programming no-
tations deal with this inconvenience by associating names with the compo-
nents and accessing them by name. The programming
construct is called a record type; the elements are records. A common no-
tation for a record type is this:

{a : A; b : B; c : C}.

Here A,B,C are types and a, b, c are names called field selectors. If r is a
record, the notations r.a, r.b, r.c select the component with that name. The
order is irrelevant, so {b : B; c : C; a : A} is the same type, and we know
that r.a ∈ A, r.b ∈ B, r.c ∈ C.

In this notation, one type for a group over G is

{add op : G → (G → G); add id : G; add inv : G → G}.

The field selectors in this example come from a type called Label, but more
generally we can say that a family of these group types abstracted over the
field selectors, say GroupType(G;x, y, z), is

{x : G → (G → G); y : G; z : G → G}.

We can combine MonoidType(G;u, v) = {u : G → (G → G); v : G}
with the GroupType to form a RingType(R;x, y, z, u, v) =

{x : G → (G → G); y : G; z : G → G; u : G → (G → G); v : G}.

Record types can be defined as function spaces over an index type such
as Label. First we associate with each x in Lable a type, say T : Label → Ui.
If we have in mind a type such as group, parameterized by G, then we map



add op to G → (G → G), add id to G, add inv to G → G, and all other
lables to Top. Call this map Grp(x). Then the group type is

x : Label → Grp(x).

An element of this type, g, is a function such that g(add op) ∈ G → (G →
G), g(add id) ∈ G, g(add inv) ∈ G → G, and g(z) ∈ Top for all other z in
Label.

The record types we use have the property that only finitely many labels
are mapped to types other than Top. For example, {a : A; b : B; c : C} is
given by a map T : Label → Ui such that T (a) = A, T (b) = B, T (c) = C,
and T (x) = Top for x not in {a, b, c}. Thus

{a : A; b : B; c : C} = x : Label → T (x).

We say that such records have finite support of {a, b, c} in Label. If I is the
finite support for T , we sometimes write the record as x : I → T (x).

It is very interesting that for two records having finite support of I1 and
I2 such that I1 ⊆ I2, and such that T : Label → Ui agree on I2, we know
that

x : I2 → T (x) v x : I1 → T (x).

For example, consider {a, b, c} ⊆ {a, b, c, d}, with records R1 = {a : A; b : B;
c : C} and R2 = {a : A; b : B; c : C; d : D}. Then R2 v R1. This natural
definition conforms to programming language practice and mathematical
practice. We will see that this definition, while perfectly natural in type
theory, is not sensible in set theory.

If we use standard labels for algebraic operations on monoids, groups,
and rings, say

Alg : {add op, add id, add inv,mul op,mul id} → U1

then

Add Monoid(G) = i : {add op, add id} → Alg(i)
Group(G) = i : {add op, add id, add in} → Alg(i)
Mul Monoid(G) = i : {mul op,mul id} → Alg(i)
Ring(G) = i : {add op, add id, add inv,mul op,mul id} → Alg(i)

and we have

Group(G) v Add Monoid(G)
Ring(G) v Group(G) v Add Monoid(G)
Ring(G) v Mul Monoid(G).



The reason that these definitions don’t work in set theory is that the
subtyping relation on function spaces is not valid in set theory. Recall that
the relation is

A v A′ B v B′

A′ → B v A → B′.

This is true in type theory because functions are polymorphic. If f ∈ A′ →
B, then given a ∈ A, the function f applies to a; so f(a) is well-defined
and the result is in B, hence in B ′. In set theory, the function f is a set of
ordered pairs, e.g. f = {< a, b >∈ A′ × B|f(a) = b}. This set of ordered
pairs can be larger than {< a, b >∈ A×B ′|f(a) = b}, so A′ → B 6⊆ A → B′.
The difference in the notion of function is fundamental, and it is not clear
how to reconcile them.

DEPENDENT RECORDS

A full account of algebraic structures must include the axioms about the
operators. For a monoid we need to say that op is associative, say

(1) Assoc (M,op) is

∀x, y, z : M. (x op y)op z = x op(y op z) in M .

and we say that id is a two-sided identity:

(2) Id(M,op, id) is

∀x : M. (x op id = x in M) and (id op x = x in M).

For the group inverse the axiom is

(3) Inv(M,op, id, inv) is

∀x : M. (x op inv(x) = id in M) and (inv(x)op x = id in M).

In set theory, these axioms are not included inside the algebraic struc-
ture because the axioms are propositions, which are “logical objects,” not
sets. But as we have seen, propositions can be considered as types. So we
can imagine an account of a full-monoid over M that looks like this:

{op : G → (G → G); id : G; ax1 : Assoc(G, op); ax2 : Id(G, op, id)}.

If g is a full-monoid, then g(op) is the operator and g(ax1) is the compu-
tational evidence that op is associative; that is, g(ax1) is a mathematical
object in the type Assoc(G, op).

Does type theory support these kinds of records? We call them depen-

dent records, since the type Assoc(G, op) depends on the object g(op). Type
theory does allow us to define them.



The object we define is the general dependent record of the form

{x1 : A1;x2 : A1(x1); . . . ;xn : An−1(x1, . . . , xn−1)}.

In Automath these are called telescopes, and they are primitive concepts.
We define them from the dependent intersection following Kopylov. Other
researchers have added these as new primitive types, and Jason Hickey
defined them from a new primitive type called the very-dependent function
space. (See Bibliographic Notes for this section.)

Recall that the dependent intersection, x : A∩B(x) is the collection of
those elements a of A which are also in B(a).

We define {x : A; y : B(x)} as the type

f : {x : A} ∩ {y : B(f.x)}.

The elements of {x : A} are the functions {x} → A; that is, functions in
i : Label → A(i) where A(x) = A and A(i) = Top for i 6= x. The singleton
label, {x}, is the finite support. The elements of the intersection are those
functions f in {x} → A such that on input y from Label, f(y) in B(f(x)).

To define {x : A; y : B(x); z : C(x, y)}, we have the choice of associating
the dependent intersection to the right or left; we chose to the left.

∗g : (f : {x : A} ∩ {y : B(f(x))}) ∩ {z : C(g(x), g(y))}.

The function g must agree with f on label x. We can see that the outermost
binding, g, satisfies the inner constraints as well. So as we intersect in more
properties, we impose more constraints on the function.

The value of associating to the left is that we can think of building up
the dependent record by progressively adding constraints. It is intuitively
like this:

({x : A} ∩ {y : B(x)}) ∩ {z : C(x, y)}.

This kind of notational simplicity can be seen as an abbreviation of

∗∗ s : (s : {x : A} ∩ {y : B(s(x))}) ∩ {z : C(s(x), s(y))},

because the scoping rules for binding operators tell us that * and ** are
equal types.

In programming languages such as ML, modules and classes are used
to modularize code and to make the code more abstract. For example,
our treatment of natural numbers so far has been particularly concrete.
We introduced them as lists of a single atomic object such as 1. Systems
like HOL take the natural numbers (N) as primitive, and Nuprl takes the
integers (Z) as primitive, defining N as {z : Z|0 ≤ z}. All these approaches



can be subsumed using a class to axiomatize an abstract structure. We
define numbers, say integers, abstractly as a class over some type D which
we axiomatize as an ordered discrete integral domain, say Domain(D). The
class is a dependent record with structure. We examine this in more detail
here.

First we define the stucture without induction and then add both recur-
sive definition and induction. We will assume display forms for the various
field selectors when we write axioms. Here is a table of displays:

Field Selector Display

Name (inside the class and outside)

add +

zero 0

minus -

mult *

one 1

div ÷

mod mod infix

less eq ≤

The binary operators are given by the type BinaryOp(D). This can be
the “curried style” type D → (D → D) that we used previously, or the
more “first-order” style, D × D → D, or it can even be the “Lisp-style,”
where we allow any list of arguments from D, say List(D) → D. We can
define monoids, groups, etc. using the same abstraction, which we select
only at the time of implementation. Likewise, we can abstract the notion
of a binary relation to BinaryRel(D). We can use D → (D → Propi) or
D × D → Propi or List(D) → Propi.

Definition For D a type in Ui the class Domain(D) is:



{ add : BinaryOp (D) ; assoc add : Assoc (D, add);
zero : D ; identity zero : Identity (D, add, zero);
minus : D → D ; inverse minus : Inverse (D, add, zero,minus);
mult : BinaryOp (D) ; assoc mult : Assoc (D,mult);
one : D ; identity one : Identity (D,mult, one);
div : BinaryOp (D);
rm : BinaryOp (D) ; ∀x, y : D.(x=y ∗ div(x, y) + rm(x, y) inD);
discrete : ∀x, y : D.(x = y in D or x 6= y in D);
less eq : BinaryRel (D); porder : PartialOrder (D, less eq);
trichot : ∀x, y : D.(x ≤ y or y ≤ x)

and (x ≤ y & y ≤ x implies x = y in D);
cong : ∀x, y, z : D.(x ≤ y implies x + z ≤ y + z) and

(x ≤ y and z ≥ 0 implies x ∗ z ≤ y ∗ z) and
(x ≤ y and z < 0 implies y ∗ z ≤ x ∗ z). }

The domain can be made inductive if we add an induction principle
such as

ind : ∀P : D → Propi. (P (0) & ∀z : {x : D|x ≥ 0}.P (z) implies P (z + 1)

& ∀z : {x : D|x < 0}. P (z + 1) implies P (z)) implies ∀x :D. P (x).

In type theory it is also easy to allow a kind of primitive recursive

definition over D by generalizing the induction to

ind : ∀A : D → Ui.A(0) → (z : {y : D|y ≥ 0} → A(z) → A(z + 1)) →

(z : {y : D|y < 0} → A(z + 1) → A(z))∀x : D.A(x).

ind eq : ∀b : A(0).∀f : (z : {y : D|y ≥ 0} → A(z) → A(z + 1)).

∀g : z : ({y : D|y < 0} → A(z + 1) → A(z)).

ind(b)(f)(g)(0) = b in A(0) and ∀y : D(y ≥ 0 implies

ind(b)(f)(g)(y) = f(y)(ind(b)(f)(g)(y − 1)) in A(y))

and ∀y : D.(y < 0 implies

ind(b)(f)(g)(y) = g(y)(ind(b)(f)(g)(y + 1)) in A(y)).

If we take A to be the type (D → D), then the induction constructor
allows us to define functions D → (D → D) by induction. For example,
here is a definition of factorial over D. We take A(x) = D for all x, so we
are defining a function from D to D. On input 0, we build 1; in the case
for z > 0 and element u in A(z), we build the element z ∗ u as result. For
z < 0, we take 0 as the result. The form of definition is

ind(λ(x.D))(1)(λ(z.λ(u.z ∗ u)))(λ(z.λ(u.0))).



11. The axiom of choice

Halmos notes that it has been important to examine each consequence of
the axiom of choice to see “the extent to which the axiom is needed in the
proof.” He said, “an alternative proof without the axiom of choice spelled
victory.” It was thought that results without the axiom of choice were safer.
But in fact, in the computational mathematics used here, which is very safe,
one form of the axiom of choice is provable! We start this section with a
proof of its simplest form.

If we know that ∀x :A. ∃y :B. R(x, y), then the axiom of choice tells us
that there is a function f from A to B such that R(x, f(x)) for all x in A.
We can state this symbolically as follows (using ⇒ for implication):

Axiom of Choice ∀x :A. ∃y :B. R(x, y) ⇒ ∃f :A → B. ∀x :A. R(x, f(x)).

Here is a proof of the axiom. We assume ∀x :A. ∃y :B. R(x, y). Accord-
ing to the computational meaning of ∀x : A, we know that there is a function
g from A to evidence for ∃y :B. R(x, y). The evidence for ∃y :B. R(x, y) is
a pair of a witness, say b(x), and evidence for R(x, b(x)); call that evidence
r(x). Thus the evidence is the pair < b(x), r(x) >.

So now we know that on input x from A, g produces < b(x), r(x) >. We
can define f to be λ(x. b(x)). We know that f in A → B since b(x) inB for
any x inA. So the witness to ∃f : A → B is now known. Can we also prove
∀x : A. R(x, f(x))? For this we need a function, say h, which on input x
produces a proof of R(x, f(x)). We know that λ(x.r(x)) is precisely this
function. So the pair we need for the conclusion is

< λ(x.b(x)), λ(x.r(x)) >

where b(x) = 1of(g(x)) and r(x) = 2of(g(x)). Thus the implication is
exhibited as

λ(g. < λ(x.1of(g(x))), λ(x.2of(g(x))) >).

This is the computational content of the axiom of choice.
In set theory the corresponding statement of the axiom of choice is

the statement that the product of a family of sets B(x) indexed by A is
nonempty if and only if each B(x) is. That is:

Πx : A. B(x) is inhabited
iff

for each x in A, B(x) is inhabited.

We can state this as a special case of our axiom by taking R(x, y) to be
trivial, say True.

∃f : (x : A → B(x)). T rue iff ∀x :A. ∃y :B(x). T rue.



Another formulation of the axiom in set theory is that for any collection C
of nonempty subsets of a set A, there is a function f taking x ∈ C to an
element f(x) in x. Halmos states this as

∃f. ∀x : (P(A) − {∅}). f(x) ∈ x

We can almost say this in type theory as: there is an element of the type

x : {Y : P(A) |Y is nonempty} → x.

One problem with this formulation is that P(A), the type of all subsets of
A, does not exist. The best we can do, as we discussed in the section on
power sets, is define

Pi(A) = {x : Ui |x v A}.

If we state the result as the claim that

x : (Y : Pi(A) × Y ) → x

is inhabited, then it is trivially true since the choice function f takes as
input a type Y , that is, a subtype of A and an element y ∈ Y , and it
produces the y, e.g.

f(< Y, y >) = y

so f(x) = 2of(x).
But this simply shows that we can make the problem trivial. In a sense

our statements of the axiom of choice have made it too easy.
Another formulation of the axiom of choice would be this:

Set Choice x : {y : Pi(A)|y} → x.

Recall that the evidence for {x : A|B} is simply an object a in A; the
evidence for B is suppressed. That is, we needed it to show that a is in
{x : A|B}, but then by using the subtype, we agree not to reveal this
evidence. Set Choice says that if we have an arbitrary subtype x of A
which is inhabited but we do not know the inhabitant, then we can recover
the inhabitant uniformly.

This Set Choice is quite unlikely to be true in type theory. We can
indeed make a recursive model of type theory in which it is false. This is
perhaps the closest we can get in type theory to stating the axiom of choice
in its classical sense, and this axiom is totally implausible. Consider this
version:

P : {p : Propi|p ∨ ¬p} → P ∨ ¬P.

We might call this “propositional choice.” It is surely quite implausible in
computational logic.



12. Computational complexity

As Turing and Church showed, computability is an abstract mathematical
concept that does not depend on physical machines (although its practical
value and its large intellectual impact do depend very much on physical
machines, and on the sustained steep exponential growth in their power).
Computability can be axiomatized as done in these notes by underpinning
mathematical objects with data having explicit structure, and by providing
reduction rules for destructor operations on data.

Hartmanis and Stearns showed that the cost of computation can also
be treated mathematically, even though it might at first seem that this
would depend essentially on characteristics of physical machines, such as
how much time an operation required, or how much circuitry or how much
electrical power or how much bandwidth, etc. It turns out that our ab-
stract internal characterizations of resource expenditure during computa-
tion is correlated in a meaningful way with actual physical costs. We call
the various internal measures computational complexity measures.

Although we can define computational complexity mathematically, it is
totally unlike all the ideas we have seen in the first eleven sections. More-
over, there is no comparably general account of computational complexity
in set theory, since not all operations of set theory have computational
meaning.

Let’s start our technical story by looking at a simple example. Consider
the problem of computing the integer square root of a natural number, say
root(0) = 0, root(2) = 1, root(4) = 2, root(35) = 5, root(36) = 6, etc.
We can state the problem as a theorem to be proved in our computational
logic:

Root Theorem ∀n : N. ∃r : N. r2 ≤ n < (r + 1)2.

We prove this theorem by induction on n. If n is zero, then taking r to be
0 satisfies the theorem.

Suppose now that we have the root for n; this is our induction hypoth-
esis, namely

∗ ∃r :N. r2 ≤ n < (r + 1)2.

Let r0 be this root. Our goal is the find the root for n + 1. As in the case
of root(34) = 5 and root(35) = 5 and root(36) = 6, the decision about
whether the root of n + 1 is r0 or r0 + 1 depends precisely on whether
(r0 + 1)2 ≤ n + 1. So we consider these two cases:

1. Case n + 1 < (r0 + 1)2; then since r0
2 ≤ n, we have:

r0
2 ≤ n + 1 < (r0 + 1)2.



Hence, r0 is the root of n + 1.

2. Case (r0 +1)2 ≤ n+ 1. Notice that since n < (r0 + 1)2, it follows that:

n + 1 < (r0 + 1)2 + 1 and ((r0 + 1) + 1)2 > (r0 + 1)2 + 1.

Hence r0 + 1 is the root of n + 1. This ends the proof.
By the axiom of choice, there is a function root ∈ N → N such that

∀n :N. root(n)2 ≤ n < (root(n) + 1)2.

Indeed, we know the code for this function because it is derived from the
computational meaning of the proof. It is this recursive function:

root(0) = 0.
root(n + 1) = let r0 = root(n)

in if n + 1 < (r0 + 1)2 then r0

else r0 + 1
end .

It’s easy to determine the number of computation steps needed to find
the root of n. Basically it requires 4 · root(n). This is a rather inefficient
computation. It is basically the same as the cost of the program:

r : = 0
while r2 ≤ n do

r : = r + 1
end.

There are worse computations that look similar, such as

slow root(n) = if n < 0 then 0
else if n < (slow root(n − 1) + 1)2

then slow root(n − 1)
else slow root(n − 1) + 1.

This computation takes 4 · 2root(n).
We might call slow root an “exponential algorithm,” but usually we

measure computational complexity in terms of the length of the input,
which is essentially log(n). So even 4 · root(n) is an exponential algorithm.
It is possible to compute root(n) in time proportional to log(n) if we take
large steps as we search for the root. Instead of computing root(n− 1), we
look at root(n÷4). This algorithm will call root at most log(n) times. Here
is the algorithm:

sqrt(x) = if x = 0 then 0
else let r = sqrt(x ÷ 4)
in if x < (2 ∗ r + 1)2 then 2 ∗ r
else 2 ∗ r + 1
end.



This algorithm comes from the following proof. It uses the following efficient-

induction principle:

If P (0) and if for y in N, P (y ÷ 4) implies P (y), then ∀x :N. P (x).

Fast Root Theorem ∀x :N. ∃r : N. r2 ≤ x < (r + 1)2.

Proceed by efficient induction. When x = 0, take r = 0. Otherwise, assume
∃r : N.r2 ≤ x ÷ 4 < (r + 1)2. Now let r0 be the root assumed to exist and
compare (2 ∗ r0 + 1)2 with x.

1. Case x < (w ∗ r0 + 1)2; then since r0
2 ≤ x ÷ 4, we know that

(2 ∗ r0)
2 ≤ x.

So 2 · r is the root of x.

2. Case (2 ∗ r0 + 1)2. Then we know that:

(2 ∗ r0 + 2)2 = (2 · (r1))
2 = 4 · (r + 1)2 > x,

since

x ÷ 4 < (r0 + 1)2 and 4 · (x ÷ 4) < 4 · (r0 + 1)2.

So 2 · r0 + 1 is the root of x. This ends the proof.
If we use binary (or decimal) notation for natural numbers and im-

plement the basic operations of addition, subtraction, multiplication and
integer division efficiently, then we know that this algorithm operates in
number of steps 0(log(x)). This is a reasonably efficient algorithm.

The question we want to explore is how to express this basic fact
about runtime of sqrt inside the logic. Our observation that the runtime is
0(log(x)) is made in the metalogic, where we have access to the computa-
tion rules and the syntax of the algorithm. Inside the logic we do not have
access to these aspects, and we cannot easily extend our rules to include
them because these rules conflict with other more basic decisions. Let’s look
at this situation more carefully.

In the logic, the three algorithms root, slow root, and sqrt are functions
from N to N, and as functions they are equal, because slow root(x) =
sqrt(x) for all x in N. Thus slow root = sqrt in N → N. This fact about
equality means that we cannot have a function T ime such as

T ime(slow root)(x) = 4 ∗ 2 root(x)

and
T ime(sqrt)(x) = 0(log(x)),

because a function such as T ime must respect equality; so if f = g then
T ime(f) = T ime(g).



At the metalevel we are able to look at slow root and sqrt as terms
rather than as functions. This is the nature of the metalogic; it has access
to syntax and rules. So our exploration leads us to ask whether we can
somehow express facts about the metalogic inside the object logic. Gödel
showed one way to do this, by “encoding” terms and rules as numbers by
the mechanism of Gödel numbering.

We propose to use a mechanism more natural than Gödel numbering;
we will add the appropriate metalogical types and rules into the logic itself.
We are interested in these components of the metalogic:

Metalogic Object Logic

term Term

x evalsto y in m steps x EvalsTo y in m Steps

eval(x) Eval(x)

The idea is that we create a new type, called Term. We show in the
metalogic that Term represents term2 in that for each t ∈ term, there is
an element rep(t) in Term. If t = t′ in term, then rep(t) = rep(t′) in Term.

If t evaluates to t′ in term, then rep(t) EvalsTo rep(t′) in Term, and if
eval(t) = t′, then Eval(rep(t)) = rep(t′).

We will also introduce a function, ref(t), which provides the meaning
of elements of Term. So for a closed term t inTerm, ref(t) will provide its
meaning as an element of a type A of the theory, if it has such a meaning. For
each type A, there will be the collection of Terms that represent elements
of A, denoted [A] = {x : Term|∃y : A.ref(x) = y in A}. The relation
ref(x) in A is a proposition Term × A → Prop.

For each type A we can define a collection of Terms that denote ele-
ments of A. Let

[A] = {x : Term|∃y : A.ref(x) = y in A}.

The relation ref(x) is in A is defined as

∃y : A. ref(x) = y in A.

This is a propositional function on Term × A.
Now given an element of [A], we can measure the number of steps that

it takes to reduce it to canonical form. This is done precisely as in the
meta theory, using the relation e EvalsTo e′ in n steps. Having Term as
a type makes it possible to carry over into the type theory the evaluation
relation and the step counting measure that is part of it. We can also define
other resource measures as well, such as the amount of space used during a



computation. For this purpose we could use the size of a term as the basic
building block for a space measure.

Once we have complexity measures defined on Term, we can define the
concept of a complexity class, as follows.

The evaluation relation on Term provides the basis for defining compu-
tational complexity measures such as time and space. These measures allow
us to express traditional results about complexity classes as well as recent
results concerning complexity in higher types. The basic measure of time
is the number of evaluation steps to canonical form. Here is a definition of
the notion that e runs within time t:

Time(e, t) iff ∃n:[0 · · · t].∃f :[0 · · ·n] → Term. f(0) = e in Term ∧
iscanon(f(n)) = true in B ∧
∀i:[0 · · · n − 1].

f(i) EvalsTo f(i + 1).

We may define a notion of space in a similar manner. First, we may easi-
lynoindent define a function size with type Term →N which computes the
number of operators in a term. Then we define the predicate Space(e, s),
that states that e runs in space at most s:

Space(e, s) iff ∃n:N.∃f :[0 · · ·n]→
Term. f(0) = e in Term and

iscanon(f(n)) = true in B and

∀i:[0 · · · n − 1]. f(i) EvalsTo f(i + 1) and

∀i:[0 · · · n]. size(f(i)) ≤ s.

Using these, we may define the resource-indexed type [T ]ts of terms that
evaluate (to a member of T ) within time t and space s:

[T ]ts
def
= {e : [T ] | Time(e, t) and Space(e, s)}

One interesting application of the resource-indexed types is to define
types like Parikh’s feasible numbers, numbers that may be computed in a
“reasonable” time. Benzinger shows another application.

With time complexity measures defined above, we may define com-
plexity classes of functions. Complexity classes are expressed as function
types whose members are required to fit within complexity constraints.
We call such types complexity-constrained function types. For example, the
quadratic time, polynomial time, and polynomial space computable func-
tions may be defined as follows:

Quad(x:A −→ B) =

{f : [x:A → B] | ∃c:N.∀a:[A]0.Time(〈〈app∗, f, a〉〉, c · size(a)2)}



Poly(x:A −→ B) =

{f : [x:A → B] | ∃c, c′:N.∀a:[A]0.Time(〈〈app∗, f, a〉〉, c · size(a)c′)}

PSpace(x:A −→ B) =

{f : [x:A → B] | ∃c, c′:N.∀a:[A]0.Space(〈〈app∗, f, a〉〉, c · size(a)c′)}

One of the advantages of constructive logic is that when the existence of
an object is proven, that object may be constructed, as we saw in our dis-
cussion of the axiom of choice, where a computable function is constructed
from a proof. However, there is no guarantee that such functions may fea-
sibly be executed. This has been a serious problem in practice, as well as
in principle.

Using the complexity-constrained functions, we may define a resource-

bounded logic that solves this problem. As we noted in Section 9 under
the propositions-as-types principle, the universal statement ∀x : A. B
corresponds to the function space x : A → B. By using the complexity-
constrained function space instead, we obtain a resource-bounded univer-
sal quantifier. For example, let us denote the quantifier corresponding to
the polynomial-time computable functions by ∀polyx :A. B. By proving the
statement ∀polyx:A.∃y:B.P (x, y), we guarantee that the appropriate y may
actually be feasibly computed from a given x.

The following is a proposition expressing the requirement for a feasible

integer square root:

∀polyx : N. ∃r : N. {r2 ≤ x < (r + 12}.
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One of the best books about basic set theory, in my opinion, is still
Foundations of Set Theory, by Fraenkel, Bar-Hillel and Levy [50].

There are a few text books on basic type theory. The 1986 book by
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List theory is the basis of McCarthy’s theory of computing [82]. The Boyer-
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Nuprl libraries provide a constructive theory.

SECTION 9 — LOGIC AND THE PEANO AXIOMS

Our approach to logic comes from Brouwer as formalized in Heyting [61].
One of the most influential accounts historically is Howard [66] and also
deBruijn [48, 49] for Automath. The Automath papers are collected in [85].

The connection between propositions and types has found its analogue
in set theory as well. The set theory of Anthony P. Morse from 1986 equated
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empty. Morse believed “that every (mathematical) thing is a set.” For him,
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tion. Quantification is the extension of these operations to families.

“Each set is either true or false, and each sentence is a name for a set.”

SECTION 10 — STRUCTURES, RECORDS AND CLASSES

The approach to records and classes developed here is based entirely on
the work of Constable, Hickey and Crary. The basic papers are [39, 46].
The account by Betarte and Tasistro [15] is related. There is an etensive
literature cited in the books of Gunter and Mitchell [56]. The treatment of
inductive classes is based on Basin and Constable [9].

SECTION 11 — THE AXIOM OF CHOICE

There are many books about the axiom of choice. One of the best is Fraenkel
et al.[50] Another is Gregory Moore’s Zermelo’s Axiom of Choice : Its

Origins, Development, and Influence [83]. Our account is based on Martin-
Löf [79].

SECTION 12 — COMPUTATIONAL COMPLEXITY

The fundamental concepts and methods of computational complexity the-
ory were laid down in the seminal paper of Hartmanis and Stearns, On

the Computational Complexity of Algorithms [60]. Many textbooks cover
this material, for example [75]. The extension of this theory to higher-order
objects is an active field [99], and the study of feasible computation is an-
other active area related to this article [12, 69, 72, 73, 74]. These topics
are covered also in Schwichtenberg [13], and in the articles of Jones [70],
Schwichtenberg [98], and Wainer [87] in this book.



The work reported here is new and based largely on Constable and
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One interesting application of the resource-indexed types is to define
types like Parikh’s feasible numbers [89], numbers that may be computed
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81. Martin-Löf, P.: 1998, ‘An Intuitionistic Theory of Types’. In: G. Sambin and J.
Smith (eds.): Twenty-Five Years of Constructive Type Theory, Vol. 36 of Oxford
Logic Guides. Oxford: Clarendon Press, pp. 127–172.

82. McCarthy, J.: 1963, ‘A Basis for a Mathematical Theory of Computation’. In: P.
Braffort and D. Hirschberg (eds.): Computer Programming and Formal Systems.
Amsterdam: North-Holland, pp. 33–70.

83. Moore, G. H.: 1982, Zermelo’s Axiom of Choice : Its Origins, Development, and
Influence, Oxford Science Publications. New York: Springer-Verlag.

84. Naumov, P.: 1998, ‘Formalizing Reference Types in NuPRL’. Ph.D. thesis, Cornell
University.

85. Nederpelt, R. P., J. H. Geuvers, and R. C. D. Vrijer: 1994, Selected Papers in
Automath, Vol. 133 of Studies in Logic and The Foundations of Mathematics. Am-
sterdam: Elsevier.

86. Nordstrom, B., K. Petersson, and J. Smith: 1990, Programming in Martin-Löf ’s
Type Theory. Oxford: Oxford Sciences Publication.

87. Ostrin, G. E. and S. S. Wainer: 2002, ‘Proof Theory and Complexity’. In: this
volume. Kluwer.

88. Palmgren, E.: 1998, ‘On Universes in Type Theory’. In: G. Sambin and J. Smith
(eds.): Twenty-Five Years of Constructive Type Theory. Oxford: Clarendon Press,
pp. 191–204.

89. Parikh, R.: 1971, ‘Existence and Feasibility in Arithmetic’. Jour. Assoc. Symbolic
Logic 36, 494–508.

90. Pientka, B. and C. Kreitz: 1998, ‘Instantiation of Existentially Quantified Variables
in Inductive Specification Proofs’. In: Fourth International Conference on Arti-
ficial Intelligence and Symbolic Computation (AISC’98). Kaiserslauten, Germany,
pp. 247–258.

91. Pierce, B. and D. Turner: 1994, ‘Simple Type-theoretic Foundations for Object-
oriented Programming’. Journal of Functional Programming 4(2).

92. Pierce, B. C.: 1991, ‘Programming with Intersection Types, Union Types, and Poly-
morphism’. Technical Report CMU-CS-91-106, Carnegie Mellon University.

93. Ranta, A.: 1994, Type-theoretical Grammar, Oxford Science Publications. Oxford,
England: Clarendon Press.

94. Reynolds, J. C.: 1974, ‘Towards a theory of type structure’. In: Proceedings Colloque
sur, la Programmation, Lecture Notes in Computer Science, Vol. 19. pp. 408–23.

95. Reynolds, J. C.: 1984, ‘Polymorphism is not set-theoretic’. In: Lecture Notes in
Computer Science. Berlin, pp. 145–156. vol. 173.

96. Russell, B.: 1908, ‘Mathematical Logic as Based on a Theory of Types’. Am. J.
Math. 30, 222–62.

97. Sazonov, V. Y.: 1989, ‘On Feasible Numbers’. In: Proceedings of the ASL Meeting.
West Berlin.

98. Schwichtenberg, H.: 2002, ‘Feasible Computation with Higher Types’. In: this vol-
ume. Kluwer.

99. Seth, A.: 1994, ‘Turing Machine Characterizations of Feasible Functionals of All
Finite Types’. In: P. Clote and J. Remmel (eds.): Proceedings of MSI Workshop on
Feasible Mathematics.

100. Smith, D. R.: 1993, ‘Constructing Specification Morphisms’. Journal of Symbolic
Computation, Special Issue on Automatic Programming 16(5-6), 571–606.

101. Smith, D. R.: 1996, ‘Toward a Classification Approach to Design’. Proceedings of
the Fiftieth International Conference on Algebraic Methodology and Software Tech-
nology, AMAST’96, LNCS pp. 62–84. Springer Verlag.

102. Stenlund, S.: 1972, Combinators, λ–Terms, and Proof Theory. D. Reidel, Dor-
drechte.

103. Thompson, S.: 1991, Type Theory and Functional Programming. Addison-Wesley.
104. Troelstra, A.: 1998, ‘Realizability’. In: S. Buss (ed.): Handbook of Proof Theory,

Vol. 137 of Studies in Logic and the Foundations of Mathematics. Elsevier, pp.



407–473.
105. Troelstra, A. S. and H. Schwichtenberg: 1996, Basic Proof Theory. Cambridge

University Press.


