Nuprl Lemma : hdf-rec-bind_wf

[A,B,C:Type]. ∀[X:C ⟶ hdataflow(A;B)]. ∀[Y:C ⟶ hdataflow(A;C)].
  (hdf-rec-bind(X;Y) ∈ C ⟶ hdataflow(A;B)) supposing (valueall-type(B) and valueall-type(C))


Definitions occuring in Statement :  hdf-rec-bind: hdf-rec-bind(X;Y) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-rec-bind: hdf-rec-bind(X;Y) all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]

\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
    (hdf-rec-bind(X;Y)  \mmember{}  C  {}\mrightarrow{}  hdataflow(A;B))  supposing  (valueall-type(B)  and  valueall-type(C))

Date html generated: 2016_05_16-AM-10_44_40
Last ObjectModification: 2015_12_28-PM-07_41_20

Theory : halting!dataflow

Home Index