### Nuprl Lemma : simple-loc-comb2-classrel

`∀[Info,A,B,C:Type]. ∀[f:Id ─→ A ─→ B ─→ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].`
`  uiff(v ∈ simple-loc-comb2(l,a,b.lifting2-loc(f;l;a;b);X;Y)(e);↓∃a:A`
`                                                                  ∃b:B`
`                                                                   (a ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f loc(e) a b) ∈ C)))`

Proof

Definitions occuring in Statement :  lifting2-loc: `lifting2-loc(f;loc;abag;bbag)` simple-loc-comb2: `simple-loc-comb2(l,a,b.F[l; a; b];X;Y)` classrel: `v ∈ X(e)` eclass: `EClass(A[eo; e])` event-ordering+: `EO+(Info)` es-loc: `loc(e)` es-E: `E` Id: `Id` uiff: `uiff(P;Q)` uall: `∀[x:A]. B[x]` exists: `∃x:A. B[x]` squash: `↓T` and: `P ∧ Q` apply: `f a` function: `x:A ─→ B[x]` universe: `Type` equal: `s = t ∈ T`
Lemmas :  simple-loc-comb-classrel false_wf le_wf select_wf cons_wf nil_wf sq_stable__le length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat int_seg_wf decidable__equal_int subtype_base_sq int_subtype_base lelt_wf Id_wf lifting2-loc_wf bag_wf lifting-loc-member-simple primrec1_lemma primrec-unroll bag-member_wf all_wf lifting-loc-gen-rev_wf uall_wf exists_wf squash_wf iff_wf event-ordering+_subtype es-loc_wf classrel_wf simple-loc-comb_wf

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
uiff(v  \mmember{}  simple-loc-comb2(l,a,b.lifting2-loc(f;l;a;b);X;Y)(e);\mdownarrow{}\mexists{}a:A
\mexists{}b:B
(a  \mmember{}  X(e)
\mwedge{}  b  \mmember{}  Y(e)
\mwedge{}  (v  =  (f  loc(e)  a  b))))

Date html generated: 2015_07_22-PM-00_08_57
Last ObjectModification: 2015_01_29-PM-09_18_04

Home Index