### Nuprl Lemma : int-rdiv_wf

`∀[k:ℤ-o]. ∀[a:ℝ].  ((a)/k ∈ ℝ)`

Proof

Definitions occuring in Statement :  int-rdiv: `(a)/k1` real: `ℝ` int_nzero: `ℤ-o` uall: `∀[x:A]. B[x]` member: `t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` real: `ℝ` int-rdiv: `(a)/k1` has-value: `(a)↓` uimplies: `b supposing a` int_nzero: `ℤ-o` so_lambda: `λ2x.t[x]` so_apply: `x[s]` regular-int-seq: `k-regular-seq(f)` all: `∀x:A. B[x]` subtype_rel: `A ⊆r B` nat: `ℕ` decidable: `Dec(P)` or: `P ∨ Q` prop: `ℙ` uiff: `uiff(P;Q)` and: `P ∧ Q` nequal: `a ≠ b ∈ T ` nat_plus: `ℕ+` not: `¬A` implies: `P `` Q` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` false: `False` less_than: `a < b` squash: `↓T` true: `True` guard: `{T}` le: `A ≤ B` less_than': `less_than'(a;b)` sq_type: `SQType(T)` subtract: `n - m` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` rev_uimplies: `rev_uimplies(P;Q)` ge: `i ≥ j ` sq_stable: `SqStable(P)` int_upper: `{i...}`

Latex:
\mforall{}[k:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[a:\mBbbR{}].    ((a)/k  \mmember{}  \mBbbR{})

Date html generated: 2020_05_20-AM-10_54_56
Last ObjectModification: 2019_12_26-PM-09_05_44

Theory : reals

Home Index