### Nuprl Lemma : rmul-rdiv-cancel3

`∀[a,b,c:ℝ].  (a * (b/a) * c) = (b * c) supposing a ≠ r0`

Proof

Definitions occuring in Statement :  rdiv: `(x/y)` rneq: `x ≠ y` req: `x = y` rmul: `a * b` int-to-real: `r(n)` real: `ℝ` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` natural_number: `\$n`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` false: `False` implies: `P `` Q` not: `¬A` rat_term_to_real: `rat_term_to_real(f;t)` rtermMultiply: `left "*" right` rat_term_ind: rat_term_ind rtermVar: `rtermVar(var)` pi1: `fst(t)` and: `P ∧ Q` true: `True` rtermDivide: `num "/" denom` pi2: `snd(t)` prop: `ℙ`
Lemmas referenced :  assert-rat-term-eq2 rtermMultiply_wf rtermVar_wf rtermDivide_wf int-to-real_wf istype-int req_witness rmul_wf rdiv_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis lambdaEquality_alt int_eqEquality hypothesisEquality independent_isectElimination approximateComputation sqequalRule independent_pairFormation independent_functionElimination universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a,b,c:\mBbbR{}].    (a  *  (b/a)  *  c)  =  (b  *  c)  supposing  a  \mneq{}  r0

Date html generated: 2019_10_29-AM-09_54_51
Last ObjectModification: 2019_04_01-PM-07_04_34

Theory : reals

Home Index