### Nuprl Lemma : rnexp-mul

`∀[n,m:ℕ]. ∀[x:ℝ].  (x^m^n = x^m * n)`

Proof

Definitions occuring in Statement :  rnexp: `x^k1` req: `x = y` real: `ℝ` nat: `ℕ` uall: `∀[x:A]. B[x]` multiply: `n * m`
Definitions unfolded in proof :  or: `P ∨ Q` decidable: `Dec(P)` less_than': `less_than'(a;b)` le: `A ≤ B` prop: `ℙ` and: `P ∧ Q` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` satisfiable_int_formula: `satisfiable_int_formula(fmla)` not: `¬A` uimplies: `b supposing a` ge: `i ≥ j ` false: `False` implies: `P `` Q` nat: `ℕ` member: `t ∈ T` uall: `∀[x:A]. B[x]` top: `Top` subtract: `n - m` nequal: `a ≠ b ∈ T ` assert: `↑b` bnot: `¬bb` guard: `{T}` sq_type: `SQType(T)` bfalse: `ff` ifthenelse: `if b then t else f fi ` uiff: `uiff(P;Q)` btrue: `tt` it: `⋅` unit: `Unit` bool: `𝔹` rev_uimplies: `rev_uimplies(P;Q)`

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}m\^{}n  =  x\^{}m  *  n)

Date html generated: 2020_05_20-AM-10_59_03
Last ObjectModification: 2019_12_28-AM-11_03_13

Theory : reals

Home Index