`∀[c,t:ℤ].  uiff(t ≤ (c + t);0 ≤ c)`

Proof

Definitions occuring in Statement :  uiff: `uiff(P;Q)` uall: `∀[x:A]. B[x]` le: `A ≤ B` add: `n + m` natural_number: `\$n` int: `ℤ`
Definitions unfolded in proof :  uiff: `uiff(P;Q)` and: `P ∧ Q` uimplies: `b supposing a` member: `t ∈ T` le: `A ≤ B` not: `¬A` implies: `P `` Q` false: `False` prop: `ℙ` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]` subtype_rel: `A ⊆r B` top: `Top` sq_type: `SQType(T)` guard: `{T}`
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination addEquality voidElimination natural_numberEquality intEquality isect_memberEquality minusEquality independent_isectElimination instantiate baseApply closedConclusion baseClosed applyEquality voidEquality independent_functionElimination

Latex:
\mforall{}[c,t:\mBbbZ{}].    uiff(t  \mleq{}  (c  +  t);0  \mleq{}  c)

Date html generated: 2016_05_13-PM-03_31_13
Last ObjectModification: 2016_01_14-PM-06_41_16

Theory : arithmetic

Home Index