Nuprl Lemma : strictness-multiply-right

`∀[a:Top]. (a * ⊥ ~ eval x = a in ⊥)`

Proof

Definitions occuring in Statement :  bottom: `⊥` callbyvalue: callbyvalue uall: `∀[x:A]. B[x]` top: `Top` multiply: `n * m` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` has-value: `(a)↓` and: `P ∧ Q` all: `∀x:A. B[x]` implies: `P `` Q` uimplies: `b supposing a` prop: `ℙ` not: `¬A` false: `False`
Lemmas referenced :  value-type-has-value int-value-type equal_wf bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueMultiply sqequalHypSubstitution hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality lambdaFormation extract_by_obid isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination multiplyExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity because_Cache callbyvalueCallbyvalue callbyvalueReduce callbyvalueExceptionCases sqequalAxiom

Latex:
\mforall{}[a:Top].  (a  *  \mbot{}  \msim{}  eval  x  =  a  in  \mbot{})

Date html generated: 2017_04_14-AM-07_21_38
Last ObjectModification: 2017_02_27-PM-02_55_03

Theory : computation

Home Index