### Nuprl Lemma : imax-right

`∀[a,b:ℤ].  uiff(imax(a;b) = b ∈ ℤ;a ≤ b)`

Proof

Definitions occuring in Statement :  imax: `imax(a;b)` uiff: `uiff(P;Q)` uall: `∀[x:A]. B[x]` le: `A ≤ B` int: `ℤ` equal: `s = t ∈ T`
Definitions unfolded in proof :  imax: `imax(a;b)` has-value: `(a)↓` uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` all: `∀x:A. B[x]` implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` uiff: `uiff(P;Q)` and: `P ∧ Q` ifthenelse: `if b then t else f fi ` le: `A ≤ B` not: `¬A` false: `False` prop: `ℙ` subtype_rel: `A ⊆r B` bfalse: `ff` exists: `∃x:A. B[x]` or: `P ∨ Q` sq_type: `SQType(T)` guard: `{T}` bnot: `¬bb` assert: `↑b` satisfiable_int_formula: `satisfiable_int_formula(fmla)` top: `Top`
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int less_than'_wf equal-wf-base int_subtype_base le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_pairFormation isect_memberFormation independent_pairEquality lambdaEquality dependent_functionElimination voidElimination axiomEquality applyEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination natural_numberEquality int_eqEquality isect_memberEquality voidEquality computeAll baseApply closedConclusion baseClosed

Latex:
\mforall{}[a,b:\mBbbZ{}].    uiff(imax(a;b)  =  b;a  \mleq{}  b)

Date html generated: 2017_04_14-AM-09_14_18
Last ObjectModification: 2017_02_27-PM-03_51_38

Theory : int_2

Home Index