Step * 1 of Lemma int_formula_prop_and_lemma

`1. y : Top@i`
`2. x : Top@i`
`3. f : Top@i`
`⊢ int_formula_prop(f;x "∧" y) ~ int_formula_prop(f;x) ∧ int_formula_prop(f;y)`
BY
`{ Try (RW (AddrC [1] (UnfoldC `int_formula_prop` ANDTHENC ReduceC)) 0)⋅ }`

1
`1. y : Top@i`
`2. x : Top@i`
`3. f : Top@i`
`⊢ int_formula_ind(x;`
`                  intformless(left,right)`` int_term_value(f;left) < int_term_value(f;right);`
`                  intformle(left,right)`` int_term_value(f;left) ≤ int_term_value(f;right);`
`                  intformeq(left,right)`` int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;`
`                  intformand(left,right)`` rec1,rec2.rec1 ∧ rec2;`
`                  intformor(left,right)`` rec3,rec4.rec3 ∨ rec4;`
`                  intformimplies(left,right)`` rec5,rec6.rec5 `` rec6;`
`                  intformnot(form)`` rec7.¬rec7) `
`∧ int_formula_ind(y;`
`                  intformless(left,right)`` int_term_value(f;left) < int_term_value(f;right);`
`                  intformle(left,right)`` int_term_value(f;left) ≤ int_term_value(f;right);`
`                  intformeq(left,right)`` int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;`
`                  intformand(left,right)`` rec1,rec2.rec1 ∧ rec2;`
`                  intformor(left,right)`` rec3,rec4.rec3 ∨ rec4;`
`                  intformimplies(left,right)`` rec5,rec6.rec5 `` rec6;`
`                  intformnot(form)`` rec7.¬rec7)  ~ int_formula_prop(f;x) ∧ int_formula_prop(f;y)`

Latex:

Latex:

1.  y  :  Top@i
2.  x  :  Top@i
3.  f  :  Top@i
\mvdash{}  int\_formula\_prop(f;x  "\mwedge{}"  y)  \msim{}  int\_formula\_prop(f;x)  \mwedge{}  int\_formula\_prop(f;y)

By

Latex:
Try  (RW  (AddrC  [1]  (UnfoldC  `int\_formula\_prop`  ANDTHENC  ReduceC))  0)\mcdot{}

Home Index