### Nuprl Definition : satisfies-poly-constraints

`satisfies-poly-constraints(f;X) ==`
`  let eqs,ineqs = X `
`  in (∀p∈eqs.int_term_value(f;ipolynomial-term(p)) = 0 ∈ ℤ) ∧ (∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p)))`

Definitions occuring in Statement :  ipolynomial-term: `ipolynomial-term(p)` int_term_value: `int_term_value(f;t)` l_all: `(∀x∈L.P[x])` le: `A ≤ B` and: `P ∧ Q` spread: spread def natural_number: `\$n` int: `ℤ` equal: `s = t ∈ T`
Definitions occuring in definition :  spread: spread def and: `P ∧ Q` equal: `s = t ∈ T` int: `ℤ` l_all: `(∀x∈L.P[x])` le: `A ≤ B` natural_number: `\$n` int_term_value: `int_term_value(f;t)` ipolynomial-term: `ipolynomial-term(p)`
FDL editor aliases :  satisfies-poly-constraints

Latex:
satisfies-poly-constraints(f;X)  ==
let  eqs,ineqs  =  X
in  (\mforall{}p\mmember{}eqs.int\_term\_value(f;ipolynomial-term(p))  =  0)
\mwedge{}  (\mforall{}p\mmember{}ineqs.0  \mleq{}  int\_term\_value(f;ipolynomial-term(p)))

Date html generated: 2016_05_14-AM-07_07_53
Last ObjectModification: 2015_09_22-PM-05_52_51

Theory : omega

Home Index