### Nuprl Lemma : resigned_wf

`∀[Pos:Type]. ∀[Mv:Pos ⟶ Type]. ∀[sg:Spread(Pos;a.Mv[a])?].  (resigned(sg) ∈ ℙ)`

Proof

Definitions occuring in Statement :  resigned: `resigned(x)` Spread: `Spread(Pos;a.Mv[a])` uall: `∀[x:A]. B[x]` prop: `ℙ` so_apply: `x[s]` unit: `Unit` member: `t ∈ T` function: `x:A ⟶ B[x]` union: `left + right` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` resigned: `resigned(x)` so_lambda: `λ2x.t[x]` so_apply: `x[s]`
Lemmas referenced :  assert_wf isr_wf Spread_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry unionEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[sg:Spread(Pos;a.Mv[a])?].    (resigned(sg)  \mmember{}  \mBbbP{})

Date html generated: 2016_05_14-PM-03_56_42
Last ObjectModification: 2015_12_26-PM-05_48_13

Theory : spread

Home Index