Nuprl Lemma : ts-rel_wf

`∀[ts:transition-system{i:l}]. (ts-rel(ts) ∈ ts-type(ts) ⟶ ts-type(ts) ⟶ ℙ)`

Proof

Definitions occuring in Statement :  ts-rel: `ts-rel(ts)` ts-type: `ts-type(ts)` transition-system: `transition-system{i:l}` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` function: `x:A ⟶ B[x]`
Definitions unfolded in proof :  ts-rel: `ts-rel(ts)` ts-type: `ts-type(ts)` transition-system: `transition-system{i:l}` uall: `∀[x:A]. B[x]` member: `t ∈ T` pi1: `fst(t)` pi2: `snd(t)` prop: `ℙ` infix_ap: `x f y` subtype_rel: `A ⊆r B`
Lemmas referenced :  rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productElimination thin hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry productEquality universeEquality cumulativity functionEquality setEquality applyEquality lemma_by_obid isectElimination because_Cache

Latex:
\mforall{}[ts:transition-system\{i:l\}].  (ts-rel(ts)  \mmember{}  ts-type(ts)  {}\mrightarrow{}  ts-type(ts)  {}\mrightarrow{}  \mBbbP{})

Date html generated: 2016_05_15-PM-05_38_58
Last ObjectModification: 2015_12_27-PM-02_04_46

Theory : general

Home Index