### Nuprl Lemma : A-rightunit'

`∀Val:Type. ∀n:ℕ. ∀AType:array{i:l}(Val;n). ∀T:Type. ∀m:A-map'(array-model(AType)) T.`
`  ((A-bind'(array-model(AType)) m A-return'(array-model(AType))) = m ∈ (A-map'(array-model(AType)) T))`

Proof

Definitions occuring in Statement :  A-bind': `A-bind'(AModel)` A-return': `A-return'(AModel)` A-map': `A-map'(AModel)` array-model: `array-model(AType)` array: `array{i:l}(Val;n)` nat: `ℕ` all: `∀x:A. B[x]` apply: `f a` universe: `Type` equal: `s = t ∈ T`
Definitions unfolded in proof :  array-model: `array-model(AType)` A-return': `A-return'(AModel)` A-bind': `A-bind'(AModel)` A-map': `A-map'(AModel)` pi2: `snd(t)` pi1: `fst(t)` all: `∀x:A. B[x]` member: `t ∈ T` squash: `↓T` uall: `∀[x:A]. B[x]` prop: `ℙ` true: `True` subtype_rel: `A ⊆r B` uimplies: `b supposing a` guard: `{T}` iff: `P `⇐⇒` Q` and: `P ∧ Q` rev_implies: `P `` Q` implies: `P `` Q`
Lemmas referenced :  equal_wf squash_wf true_wf M-map_wf array-monad'_wf M-rightunit iff_weakening_equal array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality cumulativity because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}Val:Type.  \mforall{}n:\mBbbN{}.  \mforall{}AType:array\{i:l\}(Val;n).  \mforall{}T:Type.  \mforall{}m:A-map'(array-model(AType))  T.
((A-bind'(array-model(AType))  m  A-return'(array-model(AType)))  =  m)

Date html generated: 2017_10_01-AM-08_44_08
Last ObjectModification: 2017_07_26-PM-04_30_08